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Supplementary Material to the paper

�Deconstructing the core dynamics from a

complex time-lagged regulatory biological

circuit�, Eriksson et al.

S1 Model reduction process

S1.1 Dynamical analysis of the original NT-model

Identi�cation of variable dependencies. A directed graph (Fig. S1a) was

constructed to describe the dependencies between the variables of the NT-

model (1)-(17). The NT-variables are, in principle (see Fig. S1a), represented

by nodes in this graph, and there is an edge from node j to i if j is on the

right hand side of an equation de�ning i. Arrows i → i are not illustrated.
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For further use, we also introduce two auxiliary variables

Tri13 = ([Cdc13T]− [Trimer])/[Cdc13T] (S1)

SlpSte = k′′2 [Ste9] + k′′′2 [Slp1]. (S2)

where [Trimer] is given in equations (10) and (15). Note that with the intro-

duction of Tri13, equation (11) can be written

[MPF] = ([Cdc13T]− [preMPF])Tri13. (S3)

Steady-state behaviour of each variable as a function of its closest

neighbours The steady-state behaviour of the variables of the NT-model

can be represented by steady-state input/output functions f ss. Let xi be

a variable corresponding to one node in the graph of Fig. S1a, further, let

u1
i , u

2
i , ... be the input variables to that node, e. g. for the node corresponding

to [Rum1T], x[Rum1T] = [Rum1T] and u1
[Rum1T] = [MPF], u2

[Rum1T] = [SK]. The

dynamics of each variable of the graph of Fig. S1a is described by a di�erential

equation ẋi = gi(xi, u
1
i , u

2
i , ...) (corresponding to equations (1-9) of the orig-

inal NT-model), or an algebraic equation xi = hi(u
1
i , u

2
i , ...) (corresponding

to equations (11-14) of the original NT-model and the introduced auxiliary

variables (S1,S2) ). The steady-state of the variable xi is de�ned by the

steady-state input/output function xi = f ss
i (u1

i , u
2
i , ...), which is derived from

the di�erential equations (1-8) by solving the equation gi(xi, u
1
i , u

2
i , ...) = 0
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for xi, or, in the case of the algebraic equations (i. e. equations (11)-(14)

and (S1,S2)) given directly, f ss
i = hi(u

1
i , u

2
i , ...), (see also [1]). Notably, the

equation gi(xi, u
1
i , u

2
i , ...) = 0 seam to have an unique solution for all NT-

variables, in the considered range, under biological conditions. Biological

conditions is de�ned by [IEP] ≤ 1, [PreMPF] ≤ [Cdc13T], [Slp1] ≤ [Slp1T],

[Ste9] ≤ 1 and all variables satisfy ≥ 0. For each variable the steady-state in-

put/output function f ss
i (u1

i , u
2
i , ...), was retrieved, analytically or numerically

using Mathematica (http://www.wolfram.com/). For di�erential equations

(3) and (6) the biological steady-state solution correspond to the Goldbeter-

Koshland equation [2, 1, 3].

Steady-state behaviour of subsets of variables. Next we observe that

we can retrieve steady-state functions for subsets of variables by successive

variable elimination. As an example, consider the subset consisting of the

original NT-variables {[Slp1], [Slp1T], [IEP]} = Mslp, see Fig. S1a. At steady-

state this subset can be considered as a single unit with input [MPF] and

output [Slp1]. We earlier noted that the steady-state dependence of the vari-

ables on their closest neighbors could be described by uniquely de�ned func-

tions. For [Slp1] this function corresponds to [Slp1] = f ss
[Slp1](u

1
[Slp1], u

2
[Slp1]) =

f ss
[Slp1]([Slp1T], [IEP]) and for [Slp1T] and [IEP] to [Slp1T] = f ss

[Slp1T]([MPF])

and [IEP] = f ss
[IEP]([MPF]). The subset Mslp with input [MPF] and output

[Slp1] can thus be described by the steady-state function

[Slp1] = f ss
[Slp1](f

ss
[Slp1T]([MPF]), f ss

[IEP]([MPF])) = f ss
MSlp

([MPF]). (S4)
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The steady-state behaviour of the subset {[SK], [TF]} = Msk, see Fig. S1a,

with input [MPF], M and output [SK] can be retrieved in a similar way

[SK] = f ss
[SK](f

ss
[TF]([MPF], M)) = f ss

Msk
([MPF], M). (S5)

S1.2 Construction of reduced model

S1.2.1 De�ning dynamical switching modules

From dynamical dependencies between the variables we de�ned switching

modules (Fig. S1) that were approximated by step-functions. These modules

are subsets of variables chosen so that i) the variables within a subset are con-

nected, ii) the group has only one output that needs to be recorded and iii) this

output has a switching input/output behaviour. A switching input/output be-

haviour is loosely de�ned as a steep �sigmoidish� steady-state input/output

curve, see Figures S2-S5. Furthermore, if the input to a potential switching

module comes from an already de�ned switching module, then this input is

considered as binary (high or low) and only two values have to be tested when

considering iii) above. With this strategy we de�ned the following switch-

ing modules M25 = {k25}, Mwee = {kwee}, Mslp = {[IEP], [Slp1T], [Slp1]},

Msk = {[TF], [SK]}, Mste = {[Ste9]} Mrum = {[Rum1T]} and Mtri = {Tri13},

as indicated in Fig. S1a.
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S1.2.2 Delayed step-function approximations

The dynamical behaviour of the subsets were approximated by step-functions

with time delay. With this approximation, the remaining system, i.e. the

dynamics of the variables [Cdc13T], [PreMPF] and [MPF] turns out to be

piecewise linear.

To estimate the parameters of the time-delayed step-functions two meth-

ods were used. i) The high hi, low li and threshold θi parameters of the

step-functions were tentatively estimated from the corresponding steady-

state input/output functions f ss
i of the original NT-model, Figures S2-S5,

and �ne-tuned from comparison of full scale numerical simulations between

the NT- and DPL-model. ii) The delay parameters τi were tentatively esti-

mated from the input/output response of the modules of the NT-model, to

a stepwise changing input Fig. S6 and �ne-tuned from full scale numerical

simulations.

If an input u to a switching module came from another switching module

which had already been approximated by a step-function, the input u was

considered as binary (u ∈ {h, l}). Further more, in order to get a simple

description some switching thresholds of the original NT-model were ignored

in the formulation of the DPL-model as described below.

Tentative estimation of parameters hi, li and θi:

Subsystems M25, Mwee and Mslp:

The steady-state input/output functions f ss
i of these subsystems (solid lines

Fig. S2) corresponds to k25 = f ss
k25

([MPF]) (equation (14)), kwee = f ss
kwee

([MPF])
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(equation (13)) and f ss
Mslp

([MPF]) (equation (S4)) respectively. These func-

tions were approximated by the step-functions s25, swee and sslp

s25(mpf) =


l25 if mpf ≤ θ25

h25 if mpf > θ25

, (S6)

swee(mpf) =


hwee if mpf ≤ θwee

lwee if mpf > θwee

, (S7)

sslp(mpf) =


lslp if mpf ≤ θslp

hslp if mpf > θslp

, (S8)

dashed lines Fig. S2. The high hi and low li values i ∈ {25, wee, slp} in the

step-functions correspond to the maximum and minimum of the correspond-

ing functionsf ss
k25

([MPF]), f ss
kwee

([MPF]) and f ss
Mslp

([MPF]) when [MPF ] ≥ 0.

The threshold θi corresponds to the value of [MPF] for which

f ss
i ([MPF] = θi) = li + (hi − li)/2.

Subsystem Msk:

The subsystem Msk is approximated by the step-function ssk,

ssk(mpf, M) =


hsk if φ′mpf + φ′′M ≤ θsk

lsk if φ′mpf + φ′′M > θsk

, (S9)

constructed from the steady-state function f ss
Msk

([MPF], M) (equation (S5),
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Fig. S3a) according to hsk = max(f ss
Msk

([MPF], M)) and lsk = min(f ss
Msk

([MPF], M)),

([MPF], M ≥ 0). The threshold corresponds to the values of [MPF] and M

for which f ss
Msk

([MPF], M) = li +(hi− li)/2. We approximated this threshold

from Fig. S3a with the line φ′[MPF] + φ′′M = θsk.

Subsystem Mste:

The step-function sste is approximated from the steady-state input/output

function f ss
[Ste9]([MPF], [Slp1], [SK]), see Fig. S4. The high value corresponds

to the maximum, hste = max(f ss
[Ste9]([MPF], [Slp1], [SK])), and the low value

to the minimum, lste = min(f ss
[Ste9]([MPF], [Slp1], [SK])), ([MPF], [Slp1], [SK] ≥

0). To �nd the switching threshold in the three variable input-space we

use the fact that the variables [Slp1] and [SK] earlier were approximated

by the step-functions sslp ∈ {hslp, lslp} and ssk ∈ {hsk, lsk}. The threshold

can thus be constructed from the four possible combinations of hslp, lslp and

hsk, lsk (Fig S4). We have noted that the switch when input [Slp1] = hslp

([MPF] ≈ 0.9, upper two graphs of Fig. S4) is not necessary to mimic the

behaviour of the wild-type cell. Therefore, in order to simplify the model we

have ignored this switch. When [MPF] > 0.8 we �extrapolate� the behaviour

of [MPF] < 0.8 and discard the switch when [MPF] ≈ 0.9. This leads to the
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following step-function

sste(mpf, slp1, sk) =


hste if slp1 = hslp

or (slp1 = lslp, sk = lsk and mpf ≤ θste)

lste else

,

(S10)

where θste corresponds to the threshold retrieved from the function

f ss
[Ste9]([MPF], [Slp1] = lslp, [SK] = lsk) (lower right graph of Fig. S4).

Subsystem Mrum:

The step-function srum was approximated from the original steady-state in-

put/output function f ss
[Rum1T]([MPF], [SK]), in the same way as for [Ste9],

i.e. hrum = max(f ss
[Rum1T]([MPF], [SK])), lrum = min(f ss

[Rum1T]([MPF], [SK])),

([MPF], [SK] ≥ 0) and the switching threshold is estimated based on that in-

put [SK] earlier was approximated by ssk ∈ {hsk, lsk}, Fig. S5. When estimat-

ing the switching threshold we only considered the case when [SK] = lsk (left

panel Fig. S5) and therefore θrum is retrieved by solving f ss
[Rum1T]([MPF], [SK] =

lsk) = lrum + (hrum − lrum)/2 for [MPF]. We approximate the case [SK] = hsk

(right panel Fig. S5) as srum = lrum = 0, yielding the following step-function

srum(mpf, sk) =


hrum if (sk = lsk and mpf ≤ θrum)

lrum else

. (S11)
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Subsystem Mtri:

When [Rum1T] is approximated by srum ∈ {lrum = 0, hrum = 10} (from

Fig. S5a), then Tri13 = 1 or Tri13 ≈ 0 and we have the following step-

function

stri13(rum1t) =


htri13 if rum1t = lrum

ltri13 else

, (S12)

where htri13 = 1 and ltri13 = 0.

Tentative estimation of parameters τi The transient time of the subsys-

tems Mslp, Msk, Mrum and Mste was measured by examining the step-response

to di�erent input, Fig. S6 (The subsystems M25, Mwee and Mtri have an im-

mediate response by de�nition.). For subsystems with more than one input,

the inputs were tested one at a time, keeping the other at a constant value.

Inspection of the graphs of Fig. S6 gave tentative estimates of the time-delays

of the step-functions. For simplicity, the time delays of Msk (input M), Mste

(all input) and Mrum(all input) (Fig. S6 b,d-h) were set to τi = 0, since we

found that the transient time of these subsystems did not e�ect on achieving

behaviour.

Fine-tuning of parameters The parameters were �ne-tuned from compar-

isons between DPL- and NT-model simulations. Two versions of the original

NT-model were used in this comparison, the parameter set of the wild-type
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cell (found in (18)) and the Wee1− mutation (parameters (18), except that

k′′wee = 0.3). From this comparison, l25 was changed to l25 = 0.2, as compared

to tentative parameter value 0.05, and θrum was changed to θrum = 0.02. The

delay parameters were designated τ1 = 15, for the subset Mslp, and τ2 = 7,

for the subset Msk with input [MPF]. All other tentative delays (Fig. S6)

were set to zero (see the discussion in the section before). The �nal set of

DPL-model parameters is given in (S13).

S1.2.3 Full DPL-model (M ≥ 0)

The discussion above yields the DPL-model corresponding to the full NT-

model. Using the notation that s corresponds to step-functions or combi-

nations of step-functions, x variables which remained unmodi�ed during the

reduction process, and y denotes [MPF], we have
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ẋCdc13T
(t) =− s1(t, t− τ1, t− τ2)xCdc13T

(t) + k1M(t),
ẋPreMPF(t) =s2(t)xCdc13T

(t)− s3(t, t− τ1, t− τ2)xPreMPF(t),
yMPF(t) =stri(t, t− τ2)(xCdc13T

(t)− xPreMPF(t)),

s1(t, t− τ1, t− τ2) =k′2 + k′′2sste(yMPF(t), sslp(yMPF(t− τ1)), ssk(yMPF(t− τ2),M(t)))
+ k′′′2 sslp(yMPF(t− τ1)),

s2(t) =swee(yMPF(t)),
s3(t, t− τ1, t− τ2) =swee(yMPF(t)) + s25(yMPF(t))

+ k′2 + k′′2sste(yMPF(t), sslp(yMPF(t− τ1)), ssk(yMPF(t− τ2),M(t)))
+ k′′′2 sslp(yMPF(t− τ1)),

stri(t, t− τ2) =stri(srum(yMPF(t), ssk(yMPF(t− t2),M(t)))),

Ṁ(t) =µM(t),
when yMPF decreases through 0.1, M is divided by two,
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where

s25(mpf) =

{
l25 if mpf ≤ θ25

h25 if mpf > θ25

,

swee(mpf) =

{
hwee if mpf ≤ θwee

lwee if mpf > θwee

,

sslp(mpf) =

{
lslp if mpf ≤ θslp

hslp if mpf > θslp

,

ssk(mpf,M) =

{
hsk if φ′mpf + φ′′M ≤ θsk

lsk if φ′mpf + φ′′M > θsk

,

sste(mpf, slp1, sk) =


hste if slp1 = hslp

or (slp1 = lslp, sk = lsk and mpf ≤ θste)
lste else

,

srum(mpf, sk) =

{
hrum if (sk = lsk and mpf ≤ θrum)
lrum else

,

stri13(rum1t) =

{
htri13 if rum1t = lrum

ltri13 else
.

Here the parameters are

τ1 = 15 τ2 = 7 k1 = 0.03 k′2 = 0.03 k′′2 = 1 k′′′2 = 0.1

l25 = 0.2 h25 = 5 θ25 = 0.25 hwee = 1.3 lwee = 0.15 θwee = 0.25

lslp = 0 hslp = 3 θslp = 0.4 hsk = 1 lsk = 0 φ′ = 1

φ′′ = −0.75 θsk = 0.5 lste = 0 hste = 0 θste = 0.029 hrum = 10

lrum = 0 θrum = 0.02 htri = 1 ltri = 0 µ = 0.005
(S13)

Note that, by the reduction process, these parameters are not all indepen-

dent.
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S1.2.4 Small DPL-model (M>0.8)

From the inspection of steady-state input/output graphs of subsets of vari-

ables (data not shown), we found that the main e�ect of Msk = {[TF ], [SK]},

on [Rum1T] and [Ste9] is when M < 0.8. The smaller DPL-model (19)-(29),

used in the mathematical analysis, make use of this observation. The small

DPL-model can be retrieved from the full model by replacing the dynamics

of ssk, with a constant parameter ssk = hsk = 1. Then srum = lrum = 0 and

stri = htri = 1, and the dynamics of sste is simpli�ed so that it follows the

switching behaviour of sslp (it is on when sslp is on and o� when sslp is o� ).

We therefore merge sslp and sste into sslp/ste (equation (27)) whose dynam-

ics corresponds to k′′2 [Ste9] + k′′′2 [Slp1] = SlpSte in the NT-model (equation

S2). In Fig. S1b variables which have been replaced by constant parameters

are indicated by crosses. With this removal of variables, we can de�ne new

switching modules (Fig. S1b).

S2 Mutations

The large DPL-model was used in a comparison with the NT-model for dif-

ferent parameter sets corresponding to di�erent mutations. The di�erent

parameter sets are displayed in Table S1.
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S3 Comparison between simulations of the NT-model

and the small DPL-model for di�erent initial condi-

tions.

Using the original NT-model, (1)-(18), 12 distinct sets of random initial

values were designed, each set starting a single simulation. The �rst τ = 15

minutes of these simulations were then translated to give corresponding sets

of initial functions x(t) = f0(t), t0 − τ ≤ t < t0 of the small DPL-model.

We ensured that the �rst τ = 15 min of the 12 simulations of the NT-

model satis�ed the biological constraints x ≥ 0 for all variables x, and

[PreMPF] ≤ [Cdc13T], [IEP] ≤ 1,[Ste9] ≤ 1, [Slp1] ≤ [Slp1T], and also that

the sets did not include the region M < 0.8 for which the small DPL-model

was not constructed.

Since the dynamics of [SK] and [Rum1T] were not included when con-

structing the small DPL-model, these variables were initiated with the start-

ing values [Rum1T](t0− τ) = 0 and [SK](t0− τ) = 1 in all NT-model random

sets. The simulations are illustrated in Figures S7-S9. The initial value sets

can be received from the corresponding author upon request.

S4 Proof of theorem on stability

We �rst prove that there exists a globally stable limit cycle when M = 1.8

(lemma 4). For this we need lemma 1-3. Finally, in the end of this section

14



we expand this proof to all 0.8 < M < 3.

Let t0 denote the initial time t0 = 0. For t = t0, let t′ ≥ 0 denote the

time period since the last time SD was passed, i.e. x(t0 − t′) ∈ SD and

x(t0 − t) /∈ SD, t < t′. Further on let a starting scenario, be a point x(t0)

together with a time t′. We can then divide all starting scenarios that satisfy

the restriction on f0 into four groups, S1-S4 (Fig. 7), depending on whether

x(t0) ∈ D1 ∪D2 or D3 and whether t′ < τ or t′ > τ .

S1 : x(t0) ∈ D1 ∪D2, t′ ≥ τ

S2 : x(t0) ∈ D3, t′ ≤ τ

S3 : x(t0) ∈ D3, t′ > τ

S4 : x(t0) ∈ D1 ∪D2, t′ < τ

(S14)

Lemma 1. At each point x(t0) in one of the starting scenarios only one

linear system can be used, namely

S1 : D1 : A11 (S/G2) D2 : A21 (M)

S2 : D3 : A21 (M)

S3 : D3 : A22 (EM)

S4 : D1 : A12 (G1) D2 : A22 (EM).

(S15)

(The corresponding vector �elds of the slow eigenvector approximation are

shown in Fig. 7.)

Proof: S1: If x(t0) ∈ D1∪D2, and t′ ≥ τ then x(t) ∈ D1∪D2, t ∈ [t0−τ, t0],
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therefore x(t0 − τ) ∈ D1 ∪D2 and from the switching rules (36) j = 1 and

i = 1 (x(t0) ∈ D1) or i = 2 (x(t0) ∈ D2), which give the matrices A11

or A21. S2: If x(t0) ∈ D3 and t′ ≤ τ , then from the restriction on f0

x(t) ∈ D3, t ∈ (t0 − t′, t0], and x(t) ∈ D1∪D2, t ∈ [t0 − τ, t0 − t′]. Therefore

x(t0 − τ) ∈ D1 ∪ D2 and from the switching rules (36), the linear system

de�ned by A21 must be used in D3. Starting scenario S3 can be proved

similar to S1 and S4 to S2.

For S4 and S2, some of the initial conditions x(t0) ∈ D1∪D2 and x(t0) ∈

D3 are inconsistent with the de�nition of S4 and S2, respectively. Since the

de�nitions of S4 and S2 includes that x(t0− t′) ∈ SD, t′ < τ , for S4, or t′ ≤ τ ,

for S2, only initial conditions x(t0) that can be reached from SD (within t′

minutes without passing SD again) are consistent with the de�nition. In

order to exclude x(t0) which can not be reached, we need to �nd out what

linear systems that have been used during the time period before t0 i.e. when

t ∈ [t0 − t′, t0).

Lemma 2. During the time period t ∈ [t0−t′, t0), if t′ < τ and x(t) ∈ D1∪D2

then A12 (x(t) ∈ D1) or A22 (x(t) ∈ D2) is used. If t′ ≤ τ and x(t) ∈ D3

then A21 is used.

Proof: If x(t0) ∈ D1∪D2, then, by the de�nition of t′, x(t) ∈ D1∪D2 only,

during t ∈ [t0−t′, t0), then by the restriction on f0, x(t) ∈ D3 only, during t ∈

[(t0−τ), (t0−t′)), and also x(t) ∈ D3 only, during t ∈ [((t0−t′)−τ), (t0−τ)).

Therefore, by the switching rules (36), j = 2, the corresponding time period
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τ minutes later, i.e. when t ∈ [(t0− t′), t0) and A12 (∈ D1) or A22 (∈ D2) is

used. A similar argument can be used for A21 ∈ D3.

As an example of inconsistent initial values, consider S4. By lemma 2 for

t ∈ [t0 − t′, t0) only A22 ∈ D2 or A12 ∈ D1 is used (corresponding to the

vector �elds of Fig. 7c). The region of D2 which is shadowed in Fig. 7c can,

from the �gure, not be reached from SD by the use of the linear systems A22

and A12. A similar phenomena is observed for S2, which excludes a region

of D3 where the vector �eld points towards SD.(This region is too small to

be seen in Fig. 7b.)

Next, from the vector �elds of Fig. 7 together with the information on

whether there will be a delayed switch or not, we conclude that a trajectory

can only follow the movement chart S1 → S2 → S3 → S4 → S1, i.e. from

�gure a to b to d to c and back to a.

Lemma 3. For M = 1.8 any trajectory satisfying the restriction on f0 must

move according to S1 → S2 → S3 → S4 → S1.

Proof: The proof is based on Fig. 7. A trajectory starting in S1, i.e. in a of

Fig. 7, has been on the left side of the delayed switching line (∈ D1∪D2) the

last τ minutes. Thus, there cannot be a delayed switch to another system.

Therefore, the trajectory has to follow the vector �eld of a until it moves to

D3 and S2. Since a trajectory initiating from S2 has passed SD the last τ

minutes, there has to be a delayed switch to another system within τ minutes.

Until then the only possibility for a trajectory is to move closer to the �xed
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point. The delayed switch means that the trajectory moves to S3 and Fig.

7d. When in S3, it was more than τ minutes, since the last time SD was

passed. Hence, there is no delayed switch. Then, the only possibility is that

the trajectory moves to D2, and thus scenario S4, i.e. Fig. 7c. Now, it was

less than τ minutes since SD was passed. Then there will be a delayed switch

within τ minutes. The only possibility until then is that the trajectory moves

closer to the �xed point. When the delayed switch takes place the system is

back in S1 and Fig. 7a.

By this we have proved that for M = 1.8 any trajectory has to move

according to S1 → S2 → S3 → S4 → S1 as time increase. One notes here

that a trajectory that moves according to this cannot pass SD more than

once during τ minutes. Hence the restriction on f0 will always be satis�ed.

Lemma 4. For M = 1.8, a trajectory that moves according to S1 → S2 →

S3 → S4 → S1 must approach a globally stable limit cycle as t increases.

Proof: By Fig. 7, any trajectory that passes from S2 → S3 → S4 must reach

the slow fp-eigenvector in D2 of S4. When this fp-eigenvector is reached

t′ = 0. The time it takes to follow the slow fp-eigenvector into D1 is < τ .

Thus, D1 of S4 must be reached. By Fig. 7 c, a trajectory that reach

D1 of S4 from the slow fp-eigenvector in D2 of S4, must reach the slow fp-

eigenvector in D1 of S1. A trajectory following the slow fp-eigenvector in D1

of S1 must traverse SI at a uniquely de�ned point (The point were the slow

fp-eigenvector in D1 of S1 traverses SI .). When this happens t′ > τ by the

18



de�nition of S1. Thus there is no delayed switches initiated. The solution is

thereby uniquely de�ned.

Now we have proved that for M = 1.8 there exist a limit cycle, which

is globally stable under the restriction on f0. Next we need to consider

what happens for other values of M . The �xed points and thus the slow

fp-eigenvectors are the only things that are changed in Fig. 7 when M

varies. Since the fast eigenvectors all are (0, 1), they are independent of M .

In Fig. S10, is plotted the �xed points as a function of M , i.e. x̂ij(M)

for Mmin < M < Mmax, where Mmin = 0.8 and Mmax = 3, for the four

linear systems. Here is also shown the slow fp-eigenvectors v1(Mmin) and

v1(Mmax). Thus, we have seen that for these values of M , the only change in

the vector �eld that can give a qualitative change of system dynamics is the

position of x̂11(M) (thick line in Fig. S10a). For small M < 1.66, x̂11(M)

is in D1 and for larger M > 1.66 x̂11(M) is in D2 ∪D3. If M > 1.66 then,

from this �gure and the reasoning above, we see that the only possibility is

to move according to S1 → S2 → S3 → S4 → S1. When M < 1.66 the only

possibility is to move according to S2 → S3 → S4 → S1 and any trajectory

will approach x̂11 as time increase. This concludes the proof of the stability

theorem.
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Fig. S1: Variable dependencies of the original model and subdivision into

switching modules.

Graph of variable dependencies. A node corresponds to a state-variable of

the NT-model, (1)-(17). There is an edge from node j to i if j is on the right

hand side of an equation de�ning i. Arrows i → i are not included.

a Full DPL-model, subdivision into switching modules when M ≥ 0.

b Small DPL-model, subdivision into switching modules when M > 0.8.

Some of the variables can be replaced by constant parameters (indicated by

crosses), when M > 0.8.
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Fig. S2: Steady-state input/output behaviour of M25, Mwee and Mslp and

derivation of step-function parameters.

The solid lines corresponds to the functions f ss
k25

(equation 14), f ss
kwee

(equa-

tion 13) and f ss
Mslp

respectively. The input/output function f ss
Mslp

is retrieved

by solving the equations (4-6), with d[Slp1T]
dt

= 0, d[Slp1]
dt

= 0 and d[IEP]
dt

= 0, for

[Slp1T], [Slp1] and [IEP], respectively, while only considering biological pos-

sible solutions. Then f ss
Mslp

is given by successive variable elimination. The

dashed lines refer to the corresponding �ne-tuned step functions.
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Fig. S3: Steady-state input/output behaviour of Msk and derivition of step-

function parameters.

a The function f ss
Msk

, which is retrived by solving equation (8), with d[SK]
dt

= 0

for [SK] and next insert equation (12).

b The corresponding step function.
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Fig. S4: Steady-state input/output behaviour of Mste and derivation of

step-function parameters.

The solid lines corresponds to the function f ss
[Ste9]([MPF], [Slp1], [SK]),

and the four �gures correspond to the four combinations

f ss
[Ste9]([MPF], [Slp1] ∈ {hslp, lslp}, [SK] ∈ {hsk, lsk}). These are retrieved

by solving equation (3), with d[Ste9]
dt

= 0, for [Ste9], while only con-

sidering biological possible solutions. The solution corresponds to the

Goldbeter-Koshland function (16), i.e. f ss
[Ste9]([MPF], [Slp1], [SK]) =

G((k′3 + k′′3 [Slp1]), (k′4[SK] + k4[MPF]), J3, J4). The dashed lines shows the

corresponding �ne-tuned step functions.
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Fig. S5: Steady-state input/output behaviour of Mrum and derivation of step-

function parameters.

The solid lines corresponds to the function f ss
[Rum1T]([MPF], [SK] = lsk) (left)

and f ss
[Rum1T]([MPF], [SK] = hsk) (right). These functions are retrieved by

solving equation (7), with d[Rum1T]
dt

= 0, for [Rum1T]. The dashed lines shows

the corresponding �ne-tuned step functions.
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Fig. S6: Estimation of time-delay. The input/output step-response of the

di�erent subsystems. The dashed line corresponds to the step-wise changing

input.

a Subsystem Mslp. The label on the y-axis, [Slp1]([MPF]), denotes the

response of output [Slp1] (solid line) to input [MPF] (dashed). [MPF] is

changed from 0 to 1.5 and back.

b-c Subsystem Msk.

d-f Subsystem Mste.

g-h Subsystem Mrum.
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Fig. S7: Validation of the small DPL-model for several initial conditions.

Numerical simulations with the NT-model (left) and the DPL-model (right)

for di�erent initial conditions. Each row corresponds to one comparison

of simulations starting with the same initial condition (see text). Dashed-

dotted line corresponds to M, dashed line to [MPF] (NT-model) or yMPF

(DPL-model) and solid line to SlpSte (NT) or sslp/ste (DPL).
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Fig. S8: See Figure S7.
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Fig. S9: See Figure S7.
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Fig. S10: Illustration to the proof on the theorem of stability, see Supplemen-

tary material S4.

The �xed points x̂ij(M) for Mmin < M < Mmax, where Mmin = 0.8 and

Mmax = 3 and the slow fp-eigenvectors v1(Mmin) and v1(Mmax), for the four

di�erent linear systems. For A21, A12 and A22 v1(Mmin) and v1(Mmax) are

overlapping. The fast eigenvectors (not shown) are all vertical (0, 1) and in-

dependent of M . No distinction between bona-�de and virtual �xed points

is made in the �gure.
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Parameter changes

strains NT

WT -

wee1ts k′′wee = 0.3
wee1∆ k′wee = k′′wee = 0
cdc25∆ k′25 = k′′25 = 0.02

wee1tscdc25∆ k′25 = k′′25 = 0.02, k′′wee = 0.3
wee1∆cdc25∆ k′25 = k′′25 = 0.02, k′wee = k′′wee = 0

rum1t∆ d[Rum1T]/dt = 0, [Rum1T](t0) = 0
rum1t∆wee1ts d[Rum1T]/dt = 0, [Rum1T](t0) = 0, k′′wee = 0.3

ste9∆ d[Ste9]/dt = 0, [Ste9](t0) = 0
ste9∆wee1ts d[Ste9]/dt = 0, [Ste9](t0) = 0, k′′wee = 0.3

ste9∆rum1t∆ d[Ste9]/dt = 0, [Ste9](t0) = 0,
d[Rum1T]/dt = 0, [Rum1T](t0)=0

ste9∆rum1t∆wee1ts d[Ste9]/dt = 0, [Ste9](t0) = 0,
d[Rum1T]/dt = 0, [Rum1T](t0) = 0, k′′wee = 0.3

strains DPL

WT -

wee1ts hwee = 0.3
wee1∆ hwee = lwee = 0
cdc25∆ h25 = l25 = 0.02

wee1tscdc25∆ h25 = l25 = 0.02, lwee = 0.3
wee1∆cdc25∆ h25 = l25 = 0.02, lwee = hwee = 0

rum1t∆ hrum = lrum = 0
rum1t∆wee1ts hrum = lrum = 0, hwee = 0.3

ste9∆ hste = lste = 0
ste9∆wee1ts hste = lste = 0, hwee = 0.3

ste9∆rum1t∆ hste = lste = 0, hrum = lrum = 0
ste9∆rum1t∆wee1ts hste = lste = 0, hrum = lrum = 0, hwee = 0.3

Table S1: Parameter changes of the mutated strains of table 1. All changes
are relative the WT (wild-type) cell (equations (1-18)). The values k′25 =
k′′25 = 0.02 and k′′wee = 0.3 are taken from [1].
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