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Algorithmicity and programmability in natural computing with the Game
of Life as in silico case study

Hector Zenil*

Unit of Computational Medicine, Karolinska Institutet, Sweden; LABoRES for the Natural
and Digital Sciences, Paris, France

In a previous article, I suggested a method for testing the algorithmicity of a natural/
physical process using the concept of Levin’s universal distribution. Here, I explain
this method in the context of the problem formulated by L. Floridi concerning the
testability of pancomputationalism. Then, I will introduce a behavioural battery of
programmability tests for natural computation, as an example of a computational
philosophy approach. That is to tackle a simplified version of a complex philosophical
question with a computer experiment. I go on to demonstrate the application of this
novel approach in a case study featuring Conway’s Game of Life. In this context, I
also briefly discuss another question raised by Floridi, concerning a grand unified
theory of information, which I think is deeply connected to the grand unification of
physics.

Keywords: programmability; information theory; algorithmicity; pancomputationalism;
natural computation; Conway’s Game of Life; nature-like computation; computational
philosophy

1. Introduction

In his list of ‘Open problems in the philosophy of information (PI)’, Floridi (2004) opens up

several fronts for discussion. In this article, I address two of them from the standpoint of

algorithmic information theory, with a view to either identifying possible directions which the

search for answers might take or reformulating the original questions in a bid to generate partial

answers to them.

The first is the question of the testability of pancomputationalism. That is, the question of

whether the world and the objects in it can be seen as computing processes and computing

devices. Traditionally, one proves that a system performs (universal) computation by finding a

mapping between the said system’s states and symbols, which already assumes that one can have

access to and can represent the system’s states and symbols. This is of course particularly

challenging for natural and physical phenomena, where we can hardly discern either symbols or

states, making it impossible to suggest a one-to-one correspondence between a natural system

and a (an artificial) computational system.

I address the problem of testability of pancomputationalism in three steps. I first present an

algorithmicity measure based on a previous method I advanced in Zenil and Delahaye (2010)

and discuss in Section 2. I then propose the notion of programmability in complementation to

algorithmicity for testing the computing properties of natural and physical processes. The final
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step consists of a case study focusing on Conway’s Game of Life, where I illustrate the potential

applications of the notion of programmability. All this culminates in a brief discussion of

computational philosophy as a new approach to tackle new and old philosophical questions.

I discuss specifically the question of a grand unified theory of information, which is addressed

in Section 6 from the standpoint of other unifications in physics. The conclusion then highlights

the innovative character of this new area of research, both as a new kind of philosophy based on

information and computation.

2. The algorithmicity of empirical datasets

In Zenil and Delahaye (2010), we introduced a notion that I now refer to as algorithmicity (of a

dataset), and suggested an approach for statistically testing whether physical and natural

phenomena are the result of an algorithmic process by studying the way physical and natural

processes distribute patterns. With an objective to find algorithmic signatures as predicted by

algorithmic probability (Solomonoff, 1964) and formalised by Levin’s (1974) universal (semi)

probability distribution (the prefix semi is due to the fact that the measure does not add 1 for

reasons related to the Halting problem) as a test for computationalism or the assumption that

natural and physical phenomena are computational in nature.

In Zenil and Delahaye (2010), we took seriously the question of whether physical systems

could be regarded as computational devices in which case it would then follow that natural

phenomena should follow computational laws. One such law is Levin’s (semi)probability

distribution that dictates the distribution of patterns, that is, the probability of producing a

certain output given a typical (random) computer program running on a (prefix-free) universal

Turing machine.

The method consisted of looking at empirical data produced by physical phenomena to

compare the frequency distributions to an experimental distribution produced by purely

algorithmic means [and shown to be robust enough to compare with as demonstrated in Zenil

and Delahaye (2010), Delahaye and Zenil (2011), Soler-Toscano, Zenil, Delahaye, and

Gauvrit (2014) and Zenil, Soler-Toscano, Delahaye, and Gauvrit (2013)]. We can then proceed

with a statistical comparison to test or reject the alternative hypothesis that distributions are

correlated to algorithmic distributions (possibly because their source of the same

computational nature).

Levin’s distributionm provides a mean to define the probability of a string to be produced by

a random program (whose instructions are chosen by coin tossing) running on a universal Turing

machine. Formally, mðsÞ ¼ P
p:UðpÞ¼s1=2

jpj , 1, i.e. the sum over all the programs p for which

U, a prefix-free universal Turing machine, produces s. The coding theorem describes a

connection between mðsÞ and the Kolmogorov complexity (Kolmogorov, 1965; Chaitin, 1975)

of s as follows: KðsÞ ¼ 2log2ðmðsÞÞ þ Oð1Þ. This theorem tells us that if a string s is produced by

many programs, then there is also a short program that produces s, where

KUðsÞ ¼ min fjpj;UðpÞ ¼ s}. That is, s is said to be random if it cannot be compressed and

not random otherwise.

When observing the world, the outcome of a physical phenomenon f can be seen as the result

of a natural process P. We may ask what the probability distribution of a set of processes such as

P looks like. In a world of computable processes, mðsÞ would establish the distribution of

patterns. If we wish to know whether the world were algorithmic in nature we would first need to

specify what an algorithmic world would look like.

In order to have a distribution to compare with, we calculated an experimental version of m

that we later extended in Delahaye and Zenil (2011) and Soler-Toscano et al. (2014) (and that we
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called D) with another application to the problem of the evaluation of the Kolmogorov

complexity K of short strings (a common challenge for compressibility, the traditional method

for approximating K).

The Spearman rank correlation coefficient quantifies the strength of the relationship between

the ranking order of two distributions, hence providing an objective measure of algorithmicity

as follows:

Algorithmicity. The greater the similarity between an empirical distribution of and the algorithmic
distribution of patterns as predicted by Levin’s semimeasure m, the greater the algorithmicity of the
dataset and more likely to have been produced by an algorithmic (computational) process.

D is simply an approximation of Levin’s m calculated using Turing machines (Delahaye &

Zenil 2011). In Zenil and Delahaye (2010), however, we showed that the distributions produced

with different models of computation (e.g. Turing machines, cellular automata and Post tag

systems) were correlated (which accords with our intuitive sense of complexity – remember that

m also provides information about the Kolmogorov complexity of the patterns in the distribution

obtained through use of the coding theorem)

A large algorithmicity suggests that the generating process of a dataset is algorithmic,

as defined by its degree of algorithmicity calculated by these means.

3. Programmability as a grading system for natural computation

In Zenil (2010), we showed that the empirical datasets studied had different degrees of

correlation, offering a statistical measure for algorithmicity, that is, the likelihood that a process

is algorithmic or computational. Another way to overcome the problem of having to define a

mapping between systems in order to attribute to them a degree of computation is to approach

the problem from a behavioural standpoint, that is, to ascertain whether we can make a system

behave in a way that makes it comparable, in terms of its versatility, to a general-purpose

computer. Hence, we make the assumption that central to the claim that something computes is

the capability of a system to be reprogrammed.

In Zenil (2010), I suggested some measures for classifying the behaviour of Elementary

Cellular Automata (ECA) and other systems into Wolfram’s (2002) classes, for phase transition

detection and for a novel measure of information transmission efficiency and variability that

I have more recently proposed (Zenil, 2012a) in connection with a notion of programmability.

Its advantage as compared with algorithmicity is that it is computable, unlike Levin’s m, and

hence has a greater range of applicability, particularly to areas of natural computing. Taken

together, however, the two approaches (algorithmicity and programmability) seem to offer

sensible ways to approach the question of pancomputationalism that take it beyond the realm of

a philosophical discussion, while ultimately providing insights that can enrich and perhaps boost

any philosophical discussion we may wish to have.

Instead of trying to draw a crystal clear line between what is and is not a computer (or

computation) one defines a measure of (computedness) of a natural/physical system. With a

definition of programmability we can expect to be able to construct a hierarchy of computing

devices, with digital computers appearing where they rightly should (at the top of the hierarchy),

and objects which may be considered non-computing entities figuring at the bottom of the

hierarchy. The idea of programmability put forward in Zenil (2010) is based on the notion of

compressibility, which in turn is theoretically based on the concept of algorithmic (Kolmogorov)

complexity, given that KðsÞ is upper semi-computable, meaning that there is a sequence of

lossless compression algorithms approximating KðsÞ : C1ðsÞ $ C2ðsÞ $ C3ðsÞ $ . . . $ KðsÞ.

Journal of Experimental & Theoretical Artificial Intelligence 3

D
ow

nl
oa

de
d 

by
 [

K
ar

ol
in

sk
a 

In
st

itu
te

t, 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
3:

57
 0

2 
D

ec
em

be
r 

20
14

 



KðsÞ cannot, therefore, be greater than the best compressed version of s. Programmability can

then be defined as follows:

Programmability is the ability of a system to change, to react to external stimuli (input) in order to
alter its behaviour.

Our mathematical attempt to capture this concept is rather simple (or naive), and the measure

can be adjusted (variations seem to capture different properties of the measured system).

Assuming aMarkov process, we can start by looking at the qualitative differences among different

initial configurations as a measure of variability. LetM be a system and ij an initial configuration

for j [ f1; 2; 3; . . . ; n}. Then, the variability of M is given by (for some fixed n and t)

ctn ¼
jCðMtði1ÞÞ2 CðMtði2ÞÞj þ · · ·þ jCðMtðin21ÞÞ2 CðMtðinÞÞj

tðn2 1Þ : ð1Þ
That is the sum of the absolute values of the differences of the compressed evolutions of a

system M for the initial configurations ij, j [ f1; . . . ; n}, divided by tðn2 1Þ for the purpose of
normalising the measure by the system’s ‘volume’ so that we can roughly compare different

systems for different n and different t).

Evidently, programmability is related to this variability definition, given that a system with

no apparent variability cannot be programmed. Now, let C be the result of fitting a line with

regression analysis to the t data points determined by ctn for increasing t and taking the particle

derivative of the fitting function f ðctnÞ.
C captures the asymptotic behaviour of M (or its average behaviour) as an indicator of the

degree of programmability of M relative to its sensitivity to external stimuli. We provide an

example of its application to Conway’s Game of Life in Section 4. The larger the derivative, the

greater the rate of change. C provides the programmability efficiency (the rate at which

information can be transferred) when compared with other systems for fixed n and t. We can now

associate the attribute of computation with natural/physical systems as follows:

A system U is said to compute (and therefore is a computer) if Ct
nðUÞ . 0 for long enough n and t.

More precisely, U is a Ct
n-computer for its computed Ct

n.

Programmability is therefore a combination of behavioural variability and (external)

controllability. We can see that the definition of computational universality is then simply, in

these programmability terms, maximum control over the behavioural variability of a system. In

Section 4, we see how the programmability of a system can be measured using a lossless

compression algorithm.

4. A case study: Conway’s Game of Life

An ECA is defined by a local function f : f0; 1}3 ! f0; 1}. The function fmaps the state of a cell

and its two immediate neighbours (range ¼ 1) to a new cell state: f t : r21; r0; rþ1 ! r0. Cells are

updated synchronously according to f over the space.

The Game of Life is a cellular automaton devised by Conway (Gardner, 1970; Rendell,

2000). From its inception it has attracted much interest because of the surprising ways in which

the patterns can evolve. The Game of Life traditionally unfolds on an infinite two-dimensional

grid composed of cells each of which is either ‘on/alive’ or ‘off/dead’. It is the best-known

example of a cellular automaton. The rules of the Game of Life were carefully devised by

Conway to mimic the behaviour of life (Figure 1; Gardner, 1970; Rendell, 2000).

The Game of Life takes place in discrete time, with the state of each cell at time t determined

by its own state and the states of its eight immediate neighbours at t2 1 (Moore’s
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neighbourhood of radius 1). A cell s is represented by a 1 (black) when alive or a 0 (white) when

dead, in an m £ n array of cells. A calculation of the sum of live cells in st’s eight-location

neighbourhood determines whether stþ1 is alive or dead. These cell interactions can be

organised to furnish enough computational versatility to implement logical gates and simple

memory counters, thus proving to be capable of Turing computational universality (Berkelamp

et al., 1982).

The initial conditions of Conway’s Game of Life have been extensively studied from the

point of view of the patterns they are able to produce, but little has been done to standardise the

enumerations of initial configurations. Evolutions in the Game of Life have been grouped into a

few classes depending on the kind of pattern (e.g. static, moving or periodic) that each

configuration is able to produce. A pattern is any configuration of alive and dead cells. The

LifeWiki (http://www.conwaylife.com/wiki/Main_Page, accessed in July 2012) lists 735 known

patterns, including 348 ‘oscillators’, 70 ‘spaceships’ and 132 ‘still life’. Patterns such as

‘gliders’, ‘puffer trains’ and other such wonders arise from the interaction of simple components

behaving according to well-defined rules.

In Zenil (2010), I proposed a Gray-code enumeration for one-dimensional cellular automata

in order to avoid artificial complexity from making inroads into a system, given that I was

investigating a system’s sensitivity to initial conditions leading to phase transitions. For a two-

dimensional cellular automaton such as the Game of Life, we have greater freedom to choose the

way in which we feed the automaton, given that we can play with the relative density of 0s and

1s in the original array in order to feed the system with a smooth stream of different initial

configurations. The Shannon entropy of a cellular automaton has been used before as a measure

of the fitness (or interestingness) of a rule set (e.g. Kazakov & Sweet, 2005). In the same spirit,

here we feed the Game of Life with arrays of increasing Shannon entropy. Figure 2 shows the

compressed lengths of evolutions starting from four different random initial conditions,

demonstrating that the behaviour of the system is robust, in that the compression rate remains

about the same over the explored runtime.

Figure 1. Example of patterns produced by the Game of Life after 100 steps (generations) starting from a
random array of equally likely 0s and 1s of size 10 £ 15.
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Figure 3. Space–time diagram of the evolution of the Game of Life for 100 steps (generations) starting
from a randomly generated array of equally likely 0s and 1s of size 50 £ 50. We notice still and moving
patterns, some of them oscillatory, most forming persistent structures capable of transferring information
over time.

Figure 2. Compression ratios of the evolution of the Game of Life starting from four different random initial
conditions of increasing Shannon entropy from 1 to 50 steps (generations) shows that the behaviour of the
system remains complex over time and with no clear trend from information content of the initial condition.
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In Zenil (2010), we calculated C as introduced in Section 3, capturing the asymptotic

behaviour of one-dimensional systems (mainly cellular automata, but also Turing machines).

The Game of Life is a two-dimensional cellular automaton, so the application of C should be

over a 3D space as shown in Figure 3.

First, taking the compression rate using DEFLATE’s compression algorithm1 over an

evolution of the Game of Life starting from a random initial configuration (a random array of

equally likely 0s and 1s), we can see that the compressed length very closely follows the

uncompressed length of the evolution of life (both versions being measured in bits). As

explained in Zenil (2010), this is already an indication of the apparent complexity of the system,

given that the compression algorithm is unable to find any regularities, as none of the patterns of

the system died out after the period investigated (in the case of Figure 4 after 1000 generations).

Calculating C means looking at the compression length differences (see Figure 5) of

consecutive initial configurations. In this case, consecutive initial configurations are those for

which their Shannon entropy was increased by weighting the number of 0s and 1s in the initial

array, and increasing the size of the array.

The final evaluation of C comes from linear fitting the points of ctn calculated as described in

Section 3 and then taking the derivative (the slope) of the fitted line. The result, as expected, is

close to the greatest values found in ECA (one-dimensional cellular automata with

neighbourhood range 1), as was also conjectured in Zenil (2010, 2012b) in connection to

Turing universality (that is, that systems capable of efficient universal computation should have

large C values).

The calculation of C100
50 ¼ 0:206 as defined in Section 3, for the Game of Life, is consistent

with the previous findings in Zenil (2010, 2012b), where cellular automata with large phase

transitions and those assumed and then proved to be universal had large C values, reflecting their

status as systems sensitive to their inputs and capable of transferring information (Figure 6).

Figure 4. The compressed length of the evolution of the Game of Life (broken line) follows very closely the
length of its uncompressed version (continuous line), serving as an indication of the asymptotic behaviour
of the system for initial conditions of increasing complexity and longer runtimes.
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This approach may work for abstract systems, but what about real ones? In Terrazas, Zenil,

and Krasnogor (2013), we applied some of these programmability ideas to a real-world case

in the context of an in silico investigation of porphyrin molecules, that is the molecules that

Figure 5. Plot showing the differences between compressed lengths capturing the variability of the
evolution of the Game of Life.

Figure 6. The line fitting the points produced by c10050 resulted in a C100
50 ¼ 0:206 for the Game of Life,

calculated as described in Section 3.
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give the red colour to the animal’s blood. We showed that we were able to simulate and predict

some of the shapes in the conformational space of these molecules using these

programmability tools based on algorithmic information theory. Moreover, properties studied

in synthetic biology, such as orthogonality (the impact of perturbations over other free

parameters), could successfully be investigated with the same tools. And in Zenil, Ball, and

Tegnér (2013), we also studied the abilities of this programmability measure to spot

differences between biological models related to the cell cycle or metabolic pathways with

positive results.

5. The computer as a laboratory

In the original article popularising Conway’s Game of Life, Gardner wrote:

. . . Because of Life’s analogies with the rise, fall and alterations of a society of living organisms,
it belongs to a growing class of what are called ‘simulation games’ (games that resemble real life
processes) . . . .

In its details, the Game of Life stops far short of looking like a natural system, but it does

capture many of the main properties of a phenomenon as complex as life, hence its name. Even

though it may be an oversimplification of real life, the Game of Life is complicated enough that

Conway originally conjectured that no pattern could grow indefinitely (Gardner, 1970; Rendell,

2000) – i.e. for any initial configuration with a finite number of living cells. He was wrong, and

not only do we know today that because of the Turing universality the Game of Life (Berkelamp

et al., 1982) is in fact capable of what Conway thought was out of the question, but also that most

questions about such a simple system are undecidable. Wolfram (2002) and Dennett (1991) have

used Conway’s Game of Life and deterministic computational systems in general to illustrate

possible complex philosophical formulations, relating to such matters as consciousness and free

will, which may be the upshot of simple and deterministic laws governing our universe in the

same way that simple and deterministic laws govern the Game of Life. We have used a computer

as a cheap lab to tackle, albeit in a very limited way, a philosophical question using a computer

experiment.

In the introduction of Bynum and Moor (1998), the authors acknowledge the emergence

of a new trend in philosophical practice. The movement began when certain individuals

undertook computer experiments with a philosophical motivation, perhaps even before the

invention of modern digital computers, though no doubt spurred by them. Today, we can

perform experiments to test simplified versions of certain philosophical claims with a view

to either verifying or debunking them, in much the same way that thought experiments

have been and continue to be used in philosophy. I think the trend has reached the point

where it need no longer be confined to isolated computer experiments undertaken by

philosophically minded researchers. Rather, a set of tools and methods can now be

developed for more systematic use. Computing represents at once a new opportunity and a

challenge to traditional philosophy, and will certainly shape the future of how we ask

questions about the mind, free will, consciousness and knowledge, among other things. A

few of us are pushing in this direction and we have embraced the term computational

philosophy. I think computational philosophy has great potential for contributing insights

into several of Floridi’s (2004) questions, especially as they connect areas that are within

the purview of computer science, such as artificial intelligence and information. This will

not diminish the philosophical content of these subjects but will provide a common

platform for discussion.
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5.1 Life and nature-like computation

In fact, Floridi (2002) has defined the PI as the elaboration and application of information-

theoretic and computational methodologies to philosophical problems, which turns out to be

exactly what I think is the motivation of computational philosophy. Hence, I see the latter as a

tool of priceless value to PI as defined by Floridi (2002).

In Zenil (2013), for example, I have shown that the theory of algorithmic probability can be

connected to the question of structure formation in the context of Turing’s interest on

morphogenesis and symmetry breaking, hence reconnecting Turing machines and biological

pattern formation by means of the theory of algorithmic information. I did this by actually

exhibiting how patterns emerge from randomness by performing relatively simple, even if

computationally expensive, experiments.

6. Natural computation and a Grand unified theory of information

Every time that there has been a unification in physics, what was previously thought to be a

fundamental concept was stripped of its meaning. Time and space, for example, were thought to

be fundamental and separate concepts of physical reality and their fundamental character is still

debated (Wolchover, 2013), but general relativity deprived each of its unique character, unifying

the two and making it possible to exchange one for the other as a single geometrical entity. As

with general relativity, every unifying theory has transformed a concept that was thought to be

physical into something informational. Space–time is now an abstract geometrical entity. There

is no notion of absolute time since time has no meaning (or rather its meaning varies from one

person to the next), nor is there a distinction between past, present and future in the laws of

physics. The best explanation of the nature of space and time available today is a mathematical

theory: general relativity. By doing so we have not managed to sort out every detail of a system’s

behaviour, even though these theories have an extremely impressive predictive power.

Something similar occurred with information and thermodynamics with the works by

Szilárd (1929), Landauer (1961), Bennett (1973), Fredkin and Toffoli (1982) and Toffoli (1980),

among others. They showed that there was a fundamental connection between information

and energy – that one could extract work from information – and moreover that this

connection could serve as one of the strongest arguments of essential value for a unification of

information and physical properties. Their work provided a framework within which to consider

questions such as Maxwell’s paradox, and its possible answer, and of connections between

computation, information and complexity (Bennett, 1973; Zenil, Gershenson, Marshall, &

Rosenblueth, 2012).

As is known, Wheeler thought that it was possible to translate all physical theories into the

language of bits. The framework of classical physics is based on a mechanical conception of

nature, a conception which is mirrored in the digital model of computation. However, no account

of information in relation to physics could be considered complete that does not take into

account the possible interpretations of quantum mechanics. Wheeler was not only an

information and computation enthusiast, he was also the quantum scientist involved in the

identification of the smallest possible lengths in physics, at the quantum scales (,10233 cm and

,10243 s) at which general relativity breaks down and should be replaced by, currently debated,

laws of ‘quantum gravity’ (Wheeler is also credited with having coined the terms Planck time

and Planck length, respectively, for these numerical length values). Wheeler (1990) thought that

even quantum mechanics would eventually be rooted in the ‘language of bits’.

For several reasons, black holes have come to play a vital role in the application of

information theory to physics and in the modern quest for a grand unified theory of physics.

H. Zenil10
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Black holes are at the intersection of our physical theory describing the largest objects in the

universe, namely general relativity theory, and our physical theory describing the tiniest objects

in the universe, namely quantum mechanics. This is because black holes are so massive that they

produce what the core of Einstein’s relativity theory predicts as being a consequence of gravity

(the deformation of space–time due to a massive object), a singularity point with no length,

which therefore subsists on a subatomic scale. The quest to unify the theories has therefore

focused its attention on black holes.

There is another interesting connection of black holes to information, which involves the

relation between the mass of what falls into a black hole and the size of the black hole itself

(the surface area of its event horizon). As it turns out, black holes get more massive depending

on what falls into them, but what a black hole does is somehow to compress to its minimum

possible size whatever falls into it. So black holes are natural data compressors. But this also

means that the size of the black hole serves as a physical compression limit of information (one

can think of the black hole as providing the Kolmogorov complexity of the information of the

objects falling).

It was perhaps not by chance that the same Wheeler who coined the term ‘black hole’ for the

strange solutions that general relativity produced, leading to singularities, also coined the ‘it

from bit’ dictum, suggesting that everything could be written in, and is ultimately composed of,

bits of information. According to Misner, Thorne, and Zurek (2009), Wheeler’s last blackboard

contained the following, among several other ideas: ‘We will first understand how simple the

universe is when we recognise how strange it is.’ Wheeler himself provides examples of the

trend from physics to information in his ‘it from bit’ programme. It seems therefore that a ‘grand

unified theory of information’ will not be that different from the grand unified theory of physics,

even in the likely limitations that they may not overcome, unable of complete satisfactory

explanations at every level of description and of full predictive power.

7. Concluding remarks

We have had a quick look at possible directions we may take in searching for answers to some

of Floridi’s open questions from an algorithmic information perspective and following a

qualitative and very pragmatic behavioural approach. The measures introduced in Sections 2

and 3 provide a framework for a fruitful pancomputationalism discussion. Given that the

ultimate answer may only, if ever, come from physics. I have suggested that one line of

research is to approach the question by looking at the a posteriori output pattern distribution of

a system in order to statistically test whether it resembles the output pattern distribution of a

computational process. We can also test the behaviour of the system and treat its ability to

react to external stimuli and transfer information as a metric of programmability. These two

measures provide insight into the question of whether the world looks, at least, algorithmic, if

not computational. This means we now have two pragmatic approaches to the question, and a

way to determine whether something looks like a computation, and hence the means to

differentiate between having and lacking such property to distinguish the things that appear to

us to compute from those that do not. To provide a measure of computedness is to answer the

question of what it would mean for a physical or natural system to be, or more importantly not

to be, a computational system (see Floridi, 2008), given that the question has thus far seemed

invulnerable to refutation.

We have also indicated how this approach is an example of computational philosophy that is

the trend favouring the use of computer experiments to address even complex philosophical

questions. And finally, we have briefly discussed, in the context of pancomputationalism, how
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the grand unified theory of information may turn out to go hand to hand with the grand unified

theory of physics. That is, one will lead to the other – though again, not all questions will be

answered. A grand unified theory of information will not provide all the answers to our questions

about information, and especially not to the most keenly discussed questions in Floridi’s PI, just

as a grand unified theory of physics may not provide the means to unlimited predictability.

Beyond the philosophical questions, actual measures are needed for the kind of computation

we are discovering in nature (starting from life’s blueprint represented by the DNA code) and the

kind of natural computation we are creating ourselves (for example, for reprogramming life),

and it is a great opportunity to be able to tackle both the philosophical and the pragmatic issues at

the same time and using the same tools.

Supplemental data

Supplemental material and source code available at http://www.complexitycalculator.com/
FloridiGoLJETAI.zip

Note

1. DEFLATE is a lossless data compression algorithm that uses a combination of the LZ77 algorithm and
Huffman coding. It is the standard algorithm used in many popular file formats such as.gif,.png
and.gzip, to mention a few.
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programmability test. In P. Liò, O. Miglino, G. Nicosia, S. Nolfi, & M. Pavone (Eds.), Advances in

artificial intelligence, ECAL 2013. Cambridge, MA: MIT Press.

Zenil, H., & Delahaye, J. P. (2010). On the algorithmic nature of the world. In G. Dodig-Crnkovic &

M. Burgin (Eds.), Information and computation. Singapore: World Scientific.

Zenil, H., Gershenson, C., Marshall, J. A. R., & Rosenblueth, D. (2012). Life as thermodynamic evidence

of algorithmic structure in natural environments. Entropy, 14, 2173–2191.

Zenil, H., Soler-Toscano, F., Delahaye, J.-P., & Gauvrit, N. (2013). Two-dimensional Kolmogorov

complexity and validation of the coding theorem method by compressibility. arXiv:1212.6745

[cs.CC].

Journal of Experimental & Theoretical Artificial Intelligence 13

D
ow

nl
oa

de
d 

by
 [

K
ar

ol
in

sk
a 

In
st

itu
te

t, 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
3:

57
 0

2 
D

ec
em

be
r 

20
14

 

http://dx.doi.org/doi:10.1007/s11047-013-9397-2
http://dx.doi.org/doi:10.1007/s11047-013-9397-2
https:www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/
https:www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/
https:www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/

	Abstract
	1. Introduction
	2. The algorithmicity of empirical datasets
	3. Programmability as a grading system for natural computation
	4. A case study: Conway's Game of Life
	5. The computer as a laboratory
	5.1 Life and nature-like computation

	6. Natural computation and a Grand unified theory of information
	7. Concluding remarks
	Acknowledgements
	Notes
	References

