
Reverse engineering gene networks: Integrating
genetic perturbations with dynamical modeling
Jesper Tegnér*†‡§, M. K. Stephen Yeung*, Jeff Hasty*¶, and James J. Collins*

*Center for BioDynamics and Department of Biomedical Engineering, Boston University, Boston, MA 02215; †Division of Computational Biology,
Department of Physics, Linköping University, S-581 83 Linköping, Sweden; ‡Stockholm Bioinformatic Center, Stockholm Center for Physics,
Astronomy, and Biotechnology, S-106 91 Stockholm, Sweden; and ¶Department of Bioengineering, University of California at San Diego,
La Jolla, CA 92093-0412

Edited by Charles S. Peskin, New York University, New York, NY, and approved March 6, 2003 (received for review June 6, 2002)

While the fundamental building blocks of biology are being tab-
ulated by the various genome projects, microarray technology is
setting the stage for the task of deducing the connectivity of
large-scale gene networks. We show how the perturbation of
carefully chosen genes in a microarray experiment can be used in
conjunction with a reverse engineering algorithm to reveal the
architecture of an underlying gene regulatory network. Our iter-
ative scheme identifies the network topology by analyzing the
steady-state changes in gene expression resulting from the sys-
tematic perturbation of a particular node in the network. We
highlight the validity of our reverse engineering approach through
the successful deduction of the topology of a linear in numero gene
network and a recently reported model for the segmentation
polarity network in Drosophila melanogaster. Our method may
prove useful in identifying and validating specific drug targets and
in deconvolving the effects of chemical compounds.

The genome projects are rapidly generating extensive lists of
the genes and proteins that govern cellular behavior, and the

analysis of these lists is providing a wealth of clinically relevant
information. Simultaneously, there has been impressive progress
made toward the description of the regulatory mechanisms in
many cellular systems (1). Transcriptional regulation, used by
cells to control gene expression (2, 3), occurs when a regulatory
protein increases or decreases the transcription rate through
biochemical reactions that enhance or block polymerase binding
at the promoter region. Because many genes code for regulatory
proteins that can activate or repress other genes, the emerging
picture is that of a complex web, or circuit, of interacting genes
and proteins. The elucidation of how subcellular processes at the
genetic level are manifest in macroscopic phenomena at the
phenotypic level will be a major goal of postgenomic research.

Many cellular processes are described at the genetic level by
diagrams that resemble complex electrical circuits (4), and there
has been recent interest in two broad avenues of research
relating to such genomic circuitry. At one end of the spectrum
is the task of quantifying the fundamental laws of gene regula-
tion. Within the context of the electrical circuit analogy, this
question involves the deduction of a set of mesoscopic equations
that faithfully quantify the information contained in the genetic
circuit. A natural plan of attack is to use a forward engineering
approach, whereby relatively simple circuits are designed and
tested with respect to a set of equations generated from the
underlying biochemistry. Recent work in this area has entailed
the successful coupling of dynamical systems analysis with the
construction of relatively simple genetic circuits, such as auto-
regulatory single-gene networks (ref. 5; F. Isaacs, J.H., C. R.
Cantor, and J.J.C., unpublished work), genetic toggle switches
(6), and genetic oscillators (7).

At the other end of the spectrum is the project of deducing the
connectivity of the genes in a naturally occurring large-scale
network. This work is being driven by recent technological
advances that permit the simultaneous measurement of expres-
sion levels from thousands of genes. Such microarray technology,
which rapidly produces vast catalogs of patterns of gene activity,

highlights the need for systematic tools to identify the architec-
ture and dynamics of the underlying gene networks. Here, the
system identification problem (8) falls naturally into the category
of reverse engineering; a complex genetic network underlies a
massive set of expression data, and the task is to infer the
connectivity of the genetic circuit.

The reverse engineering approach requires large data sets and
extensive computational resources. There are typically an enor-
mous number of network architectures that are compatible with
a given set of expression data, and such a mapping problem
initially makes the task of deducing a particular network seem
daunting. Several studies have therefore targeted small networks
by using genetic algorithms, nonlinear models, time-series anal-
ysis, and Bayesian models (9–15), but it is not clear whether these
techniques scale for large networks (�100 genes). Techniques to
analyze large data sets from whole-genome networks include
cluster analysis and the systematic search for characteristic
patterns of gene expression associated with some pathological
state of interest (16–20) and typically provide only indirect
information about network structure.

As mentioned above, several novel small-scale designer gene
networks have been constructed and studied within the context
of mathematical modeling (refs. 5–7 and 21; F. Isaacs, J.H., C. R.
Cantor, and J.J.C., unpublished work). In the present work, we
explore the utilization of such designer gene networks in the
reverse engineering of large-scale networks. These small de-
signer networks can be inserted into cells and used to provide a
controlled perturbation mechanism for gene expression exper-
iments. Our rationale is that the resulting changes in mRNA
levels provide indirect information about the network topology.
Our reverse engineering scheme is designed to provide experi-
mentalists with a robust recipe for deducing network topology
through the analysis of data generated from a series of rationally
constructed, designer-perturbed microarray experiments.

Methods
Here we address how to construct a dynamical model that
captures the structure of a gene network, and how to design a
reverse engineering scheme that is robust to noise, using only
steady-state changes in gene expression, while using realistic a
priori statistical constraints on the nature of gene networks.
Because reliable large-scale measurement of protein and me-
tabolite concentrations is not yet feasible, we focus on the
mRNA dynamics.

Although our motivation stems from measurements of indi-
vidual mRNA concentrations from microarray experiments,
here we will demonstrate our reverse engineering procedure
through the utilization of in numero models in generating
simulated microarray data. We will designate these models as
data-generating models, and we will demonstrate the validity of
our procedure by perturbing these models and then using the

This paper was submitted directly (Track II) to the PNAS office.

§To whom correspondence should be addressed. E-mail: jespert@ifm.liu.se.

5944–5949 � PNAS � May 13, 2003 � vol. 100 � no. 10 www.pnas.org�cgi�doi�10.1073�pnas.0933416100

generated data to deduce the underlying connectivity of the
models.

We can project the dynamics of the network onto a general
linear mapping model because we deliver the perturbations
around a steady state. We consider a network of N genes, with
typical time scales �1, �2, . . . , �N. We denote the mRNA
expression levels of the genes by x1, x2, . . . , xN. In the absence
of any interaction, we let the ith mRNA species degrade at some
rate �i. However, an mRNA, say the jth, may indirectly affect the
dynamics of another mRNA, say the ith, through intermediates
such as proteins and metabolites, and thus change its transcrip-
tion rate. We represent this by an effective gene-to-gene cou-
pling coefficient wij. We perturb the genes by using a ramp
function Pi (cf. Fig. 1 a and b). The linearized mapping model
around x1 � a1, . . . , xN � aN, is

�i

dxi

dt
� ��i�xi � ai� � �wi1�x1 � a1� � wi2�x2 � a2� � · · ·

� wiN�xN � aN�� � Pi [1]

for i � 1, . . . , N, with 2N � N2 unknown parameters (N �’s,
N �’s, and N2 w’s).

The general nature of the experiments and analysis we per-
form in the present study is illustrated with the three-gene
network in Fig. 1. Using a genetic toggle switch (Fig. 1a; ref. 6),
we can selectively perturb the activity of a given gene (here
chosen to be x1). The time course of the gene expression before,
during, and after the sustained perturbation is monitored (Fig.
1b). A transient stimulus switches the toggle from the lower to
the upper state, and the toggle is then left in its upper state
(dashed line in Fig. 1b). The activities of the other two genes (x2,
x3) change because of their interactions with x1. Thus, measuring
the gene expression levels before and after the perturbation gives
us information on the network structure.

Because the reverse engineering method has to be robust
against transient fluctuations caused by either intrinsic noise or
experimental variability in microarrays, we measure only the
average steady-state values of gene expression (thick lines in Fig.
1b). Thus Eq. 1 becomes 0 � w�i1(x1 � a1) � . . . � w�i,i�1(xi�1 �
ai�1) � (xi � ai) � w�i,i�1(xi�1 � ai�1) � . . . � w�iN(xN � aN), where
we absorb �i into wii and rescale the coupling parameters, viz, w�ij
� wij�(wii � �i), leaving only N2 parameters. The reverse
engineering problem is to infer all of the unknown parameters
w�ij, constituting the matrix W, from the induced changes in gene
expression �i � xi � ai. The inference problem for large, dense

networks is computationally intractable if we have to search
through all possibilities. This is because the number of possible
solutions consistent with the data are prohibitively large. Data
from cellular networks, including protein–protein interactions
(22) and metabolic networks (23), suggest a sparse topology
because the maximal number of inputs (kmax) to a unit is kmax 		
N. This constraint reduces the search space and the number of
computations in our reverse engineering algorithm.

The Reverse Engineering Algorithm. The underlying idea of our
algorithm is to rationally select genes to perturb to maximize the
amount of information. Without any prior knowledge, we make
a random choice in the first perturbation (cf. Fig. 1). Next, we
iteratively perturb genes whose activity has changed the least.
Then we perturb, without repetition, the genes with connections
that are most uncertain. We introduce an error term � to
quantitate the uncertainty. In practical terms, this means that if
�xi� 	 � or �xi � xj� 	 � in a given experiment, then we can neither
distinguish xi from noise nor differentiate between whether xi or
xj connects to a given target gene xk. The sources of the error
include biological noise and measurement variability. We sum-
marize our iterative procedure as follows.

Y Step 1: Initialization. Randomly select a gene to perturb in the
first experiment and measure the response of all genes.

Y Step 2: Selection. Select, without repetition, the genes with the
smallest change in expression (��i� � �xi � ai� 	 �) resulting
from the previous perturbation experiments. Repeat until
each gene satisfies ��i� � � in at least one perturbation
experiment. The number of perturbations, including the ini-
tialization step, is r.

Y Step 3: Refined selection. Here we give a rational selection
procedure for which genes to perturb in additional experi-
ments to obtain a sufficient amount of data to identify the
connectivity matrix.

Y Step 3.1: Construction of consistent solutions. For every gene
(i � 1, . . . , N), construct the qi number of input solutions
(vectors) to Eq. 2, which are consistent with the previous r
experiments. This produces a qi
 N solution matrix (Mi) for
every gene xi. Note that the number of consistent solutions
generally differs between the genes, qi � qj.

Y Step 3.2: Construction of N different ranked gene lists. For a
given gene i and a matrix Mi we calculate the variance across
the different possible inputs, i.e., Var[(Mi(:, j))] for every input
gene j (MATLAB notation). This list of N variances, corre-
sponding to possible inputs for a gene xi, is sorted. The highest
rank corresponds to the largest variation. This calculation is
performed for all genes, thus producing N different lists where
each list therefore consists of N ranked elements.

Y Step 3.3: Construction of a single ranked gene list. Using the
N number of ranked lists, every gene has been ranked N
number of times. The rankings for every gene in all lists is
summed. The single list contains a gene list where the first
gene in the list corresponds to the input gene that has had the
largest ranking across all different N lists.

Y Step 3.4: Perturb the gene(s) with the highest ranking in the
list constructed in Step 3.3. From the results of experiment
r � 1, filter out the inconsistent solutions in Mi for all i. Repeat
step 3.2 and 3.3 and perform an additional perturbation
experiment.

Y Step 4: Convergence check and weight matrix reconstruction.
Inspect the remaining matrices Mi to check whether the
average {Mean[(Mi(:, j))]} is sufficiently large, to determine
whether any wij differs significantly from zero, which would
indicate the presence of an interaction. For any wij that cannot
be resolved, repeat Step 3. The connectivity matrix W is
thereby reconstructed.

Fig. 1. (a) Schematic three-gene network. Arrows and filled circles indicate
activation and repression, respectively, of magnitude wij from gene xj to xi. A
genetic toggle perturbs x1 by using a ramp function. (b) The effect on the gene
dynamics (solid lines) induced by the toggle (dashed line) in a simulated gene
expression experiment. Averages of gene activities before (ai, during time 0 to
10 a.u., thick line) and after (time 60 to 80 a.u., thick line) the perturbation are
estimated.

Tegnér et al. PNAS � May 13, 2003 � vol. 100 � no. 10 � 5945

G
EN

ET
IC

S

In Numero Experiments and Results
In this section, we illustrate the validity of our reverse engineer-
ing algorithm with two in numero experiments. We demonstrate
that we can identify the underlying architecture of the data-
generating models by selectively and iteratively perturbing the
gene network around the steady state. In the first in numero
experiment, we consider a linear model that is equivalent to the
mapping model. Because the mapping is exact in this case, we are
able to draw conclusions that are independent of errors induced
from the mapping. In the second in numero experiment, we
consider a previously reported nonlinear data-generating model
describing the Drosophila segmentation network (24). In this
case, we are able to demonstrate that the use of a linear mapping
leads to the correct deduction of the connectivity of an under-
lying nonlinear model.

Example 1: A Linear Gene Network. To illustrate our method, we
constructed a random network W with n � 40 and kmax � 3. We
arbitrarily chose 10 genes to have three input connections, 20
genes to have two input connections, and 10 genes to have one
input connection. We then randomly assigned these connections.
In this hypothetical 40-gene network with kmax � 3, there are
N(N!�(kmax!(N � kmax)!))2kmax � 105 possible sets of inputs to a
given gene. The number of possible matrices W is therefore on
the order 10200. The goal of our reverse engineering algorithm is
to reduce the number of connectivity matrices to one, and below
we show how the expression data from a rationally chosen
sequence of perturbations can be used to infer a unique W.

As an example we focus here on identifying the inputs to a
specific gene (17) in the network. We arbitrarily chose to perturb
gene 1. Then we examined the changes in gene expression, �i
(Fig. 2 Top), and the variation within the set of possible solutions
(Var[(M17(:, j))]; Fig. 2 Middle). The induced changes in gene
expression vary from small to large (Fig. 2 Top). We kept track
of the possible inputs that are consistent with the expression data
generated by the first perturbation. Intuitively, we expect a small
change in expression level for a given gene (j) to provide poor

constraints as to whether gene j influences another gene (i). This
expected relationship between the variation of the proposed
inputs from a given gene j to gene i and the magnitude of the
induced expression change are indeed confirmed in the numer-
ical experiments (Fig. 2 Bottom). This observation is the basis for
selecting for subsequent perturbation the gene with the smallest
expression change and maximal variation in the consistent
inputs. Determining W, we perform this calculation for all genes
in each step.

We reverse engineered several randomly generated 40-gene
networks (kmax � 3). In Fig. 3, the number of consistent possible
solutions averaged over all genes with kmax � 3 is plotted against
the number of perturbation experiments. For comparison, we
studied the determination of W when all single-gene perturba-
tions are selected randomly without repetition (circles in Fig. 3).
Here, 10 perturbation experiments are needed to identify the
connectivity for all genes in the network. Selecting genes more
judiciously, as prescribed by our scheme, is more efficient. It
leads to the correct network architecture with only seven per-
turbations (triangles in Fig. 3). Because W is sparse by definition,
the perturbation of a single gene often results in little change in
expression activity across the network. Therefore, efficiency is
gained by introducing multiple perturbations for different genes
in each experiment (squares in Fig. 3).

The number of perturbations that are required to infer the
network structure depends not only on the network complexity
as determined by N and kmax, but also on possible sources of

Fig. 2. (Top) The change in gene expression (�i � xi � ai) for all genes (x axis,
n � 40) when x1 is perturbed. (Middle) For every gene, there are several
different possible inputs (solutions) from other genes that are consistent with
the expression data generated from one perturbation experiment. Here we
plot the standard deviation �i,j,e of M17(:,j) (diamonds; y axis) of different
genes (x axis, j) and the mean weights w� [(M17(:,j))�; open circles] across all
possible input solutions to gene x17 after the first perturbation experiment
(e � 1). The two actual input connections (from genes 14 and 18) are indicated
by �. (Bottom) The dependence between the change in expression level and
the variation in the proposed solutions.

Fig. 3. Number of consistent possible solutions (log scale) as a function of the
number of perturbation experiments with three different selection proce-
dures: circles represent one randomly selected (RP) gene perturbed per ex-
periment; triangles correspond to one algorithmically selected (AP) gene
perturbed in every experiment; and squares represent four algorithmically
selected genes perturbed per experiment. Both the triangles and squares
indicate the trend that NCPS (the number of consistent possible solutions)
drops logarithmically with the number of experiments (dashed line) when we
select the genes algorithmically (n � 40). Note that because the first pertur-
bation is chosen randomly, the difference between the two selection schemes
is revealed after the first perturbation.

5946 � www.pnas.org�cgi�doi�10.1073�pnas.0933416100 Tegnér et al.

error, �, including (i) experimental resolution, (ii) mapping
errors such as those stemming from nonlinearities, and (iii) finite
model resolution (i.e., the grid of wij). Here we examine how the
critical number of experiments EC depends on the ratio between
the error � and �, where � is the absolute change in gene
expression �xi � ai� averaged over all genes and all experiments
(Fig. 4a). Because both N and kmax determine the combinatorial
complexity of a network, we consider the ratio between EC and
log(NCPS), where NCPS is the number of consistent possible
solutions.

For reference, we have plotted the three cases from Fig. 3 in
Fig. 4a (boxed). Clearly, perturbing multiple genes per experi-
ment (squares) reduces the number of possible solutions more
efficiently than perturbing only one gene per experiment (cir-
cles). In addition, increasing the error � for the same set of
expression data (i.e., � is unchanged for the different cases)
necessitates more experiments to resolve the network in all cases
(Fig. 4a). The selection algorithm produces a slope of 1⁄2, whereas
there is a faster growth in EC�log(NCPS) when a random selection
scheme is used (triangles). We therefore expect our gene selec-
tion algorithm to be particularly useful when the ratio between
� and � is large.

We have also examined how the ratio between EC and
log(NCPS) depends on the number of genes N (Fig. 4b). Using
multiple perturbations, we find that the critical number of
experiments, EC, is well approximated by log(NCPS) for different
N. This finding allows us to express EC in terms of network
parameters as

EC � �m � p
�

��log�skmax� N
kmax

��, [2]

where s is the number of different possible values for wij and the
parameters m and p are constants found by fitting. Here m � 0.75
and p � 0.5 in the case of four algorithmically selected pertur-
bations per experiment (Fig. 4a), whereas p � 1 and m � 0.75
for randomly selected perturbations. In the N �� kmax limit, EC
scales as log N (Fig. 4c). Fig. 4c also shows how EC depends on
both kmax and ���. Note that by expanding logNkmax
to leading order, we can use 1⁄2 kmax [1 � ���] log[N] to esti-
mate EC.

The dependence of EC on s, the number of different values for
wij, is relatively weak (Fig. 4d), because s is inside the logarithm
(Eq. 3). Hence, an enhanced resolution in wij, with the grid size
�w � 2�(s � 1), would not increase the critical number of
experiments significantly. To reverse engineer a network similar
to the protein network in yeast (22), Fig. 4d illustrates that our
method identifies �95% of the connections by using 25–100
experiments (��� � 1 � 10, kmax � 5, s � 10, n � 2,000), whereas
50–300 experiments (kmax � 15) are required to recover all
connections. As a rule, we have EC 		 N, even though it takes
more experiments to resolve denser networks.

Example 2: A Nonlinear Gene–Protein Network. Although the linear
data-generating model of the previous example provided a
systematic benchmark for our scheme, it is likely that naturally
occurring gene regulatory networks contain significant nonlin-
earities (21). In this in numero experiment, we explore the
utilization of our scheme in the context of a previously reported
data-generating model describing the segmentation polarity
network in Drosophila (24). Even though this model contains
strong nonlinearities and has several protein–protein interac-
tions that we assume we cannot measure directly, we find that we
can recover the effective gene–gene interactions by using a
linear model.

The Drosophila model is governed by 10 nonlinear equations
describing the time evolution of both genes and proteins (see
Supporting Text, which is published as supporting information
on the PNAS web site, www.pnas.org). The form of the equa-
tions is given by the evolution of mRNA for gene x, dx�dt �
y1Pv1��1

v1 � y1Pv1, where P � 1 � y2
v2�(�2

v2 � y2
v2). The y1 protein

activates gene x and the y2 protein acts as a repressor. The
half-maximal activation coefficient is governed by �1 and �2,
respectively, and v1 and v2 are the Hill coefficients. The full
model (Fig. 5a) has several protein–protein interactions, such as
those between PTC, CI, and CN. However, when we reverse
engineer the segmentation network, we monitor and consider
only the changes in mRNA expression, attempting to recover the
effective gene-to-gene interactions (Fig. 5b), in the absence of
information concerning the protein dynamics.

Perturbing the network as outlined in the linear section was
sufficient to identify the dominant connections. Our reverse
engineering algorithm found that the interaction from the ptc

Fig. 4. Scaling behavior of the required number of perturbation experi-
ments to identify a gene regulatory network. (a) Increasing the error �

increases the number of critical experiments (EC). The experimental resolution
is reduced (increased �) by using the same set of simulated expression data;
thus, the signal (�) is unchanged. The estimated slopes, the required number
of experiments EC scaled by log(NCPS), from Fig. 3 are plotted (boxed) for
reference (RP, randomly selected perturbation; AP, algorithmically selected
perturbation). For reference, a dashed line with unity slope is plotted (n � 40).
(b) Scaling behavior with increasing network size (N). Multiple toggles (four to
eight) are used with ��� � 0.5. The filled box indicates the n � 40 case by using
four algorithmically selected perturbations per experiment. (c) Theoretical
estimates of the critical number of experiments, EC, as a function of N, maximal
number of inputs kmax, and two different values of the ��� term. (d) Small
increase in EC with increasing resolution in w (i.e., s) for two different values
of the ��� term (n � 2,000).

Fig. 5. (a) Wiring diagram of the Drosophila segmentation cell model. Genes
are shown as circles and proteins as squares. (b) The effective gene-to-gene
wiring diagram. A link here indicates that there exists at least one protein
pathway connecting two genes. Arrows and filled circles denote activation
and repression, respectively.

Tegnér et al. PNAS � May 13, 2003 � vol. 100 � no. 10 � 5947

G
EN

ET
IC

S

gene to itself was significantly different from zero, indicating a
strong effective negative coupling. The algorithm also suggested
a weak positive connection from ci to ptc (dashed line in Fig. 6),
whereas all other connections to ptc were proposed to be zero.
This compares well with the original segmentation network. As
can be discerned from Fig. 5, there are two pathways through
which the ptc gene represses its own expression. The first
pathway involves the ptc gene activating the protein PTC, which
stimulates the production of protein CN, which then represses
the expression of ptc. In the other net negative pathway, the PTC
protein also represses the production of the CID protein and the
CID protein enhances ptc expression. The negative ptc self-
interaction detected by our algorithm thus corresponds to the
combined inhibitory effect of these two pathways. The above
procedure was repeated for each of the genes in the Drosophila
model. The resulting network, as found by our reverse engineer-
ing scheme (Fig. 6), is an accurate reconstruction of the effective
gene-to-gene interactions in the web of gene–protein pathways
(Fig. 5b). All statistically significant connections (solid lines in
Fig. 6) detected by our algorithm are correct as they have the
same sign as the effective gene-to-gene connections displayed in
Fig. 5b.

As an independent test of our scheme, we numerically com-
puted the Jacobian of the Drosophila segmentation model. The
gene-to-gene connections thus found are indicated as asterisks in
Fig. 6. All of these connections are identified by the reverse
engineering procedure (Fig. 6). Interestingly, the sign in the
original pathway diagram (Fig. 5 a and b) is not a reliable
predictor of the net strength of an intermediate reaction cascade.
Indeed, our scheme reveals that the wg self-interaction and the
ptc-to-hh projections are functionally weak. Of the three inputs
to hh, the repression from the ptc gene had the smallest Jacobian
term, which is in agreement with what we found from our reverse
engineering scheme. Our algorithm also finds the net effect of
parallel pathways in the complete gene–protein network. For
example, the ci-to-wg interaction is determined to be a net
positive weak connection. Adding the Jacobian terms from the
two protein pathways confirms that the sum is positive but small
(asterisks in Fig. 6). The en self-coupling is the single connection
that does not have a corresponding Jacobian term. Finally, we
note that if we can perturb and monitor the activity of any gene
or protein, then we can reconstruct the full network correspond-

ing to Fig. 5a (data not shown). The problem is then equivalent
to reconstructing a gene network without proteins.

Discussion
We have developed an iterative reverse engineering approach
suitable for reconstructing gene regulatory networks. By using a
minimal linear model and by selectively and iteratively perturb-
ing genes in a gene network, we can recover the network
topology with a small number of experiments. We have cali-
brated our mapping scheme through a series of in numero
experiments, including tests on a nonlinear Drosophila gene–
protein network.

Our algorithm reverse engineers the network on a row basis,
and so its efficiency depends on kmax, the bound for the number
of input edges, but it is independent of the number of output
edges. Our algorithm requires O(kmax(���)log[N]) perturbation
experiments to identify a network where each gene has at most
kmax inputs. The kmaxlog[N] factor is in accordance with an earlier
conjecture based on the scaling behavior of Boolean models
(16). We also find, as one would intuit, that fewer perturbation
experiments are needed when the error is small and the changes
in gene expression are large. We observed that perturbations
using multiple toggles were more efficient than single-gene
perturbations. The signal (�) is larger with multiple perturba-
tions because we are less likely to encounter situations where the
activity of only a small fraction of genes is altered. This is
different from the situation where individual perturbations are
large, which, while increasing the signal, has the undesirable,
possible consequence of causing significant nonlinear effects.
Using multiple genetic perturbations is therefore an efficient
method for increasing the average change in gene expression
without causing nonlinear effects. Our approach differs from
other schemes where only a single gene is perturbed at a time (13,
25). In these earlier studies, knockouts were used to induce
changes in gene expression; however, knockouts may induce
secondary compensatory changes and therefore change the
connectivity matrix W. In contrast, perturbing the gene dynamics
with synthetic gene networks, such as a toggle switch (6),
provides a rapid and controlled means to induce changes in gene
expression without changing W.

Our reverse engineering algorithm is very efficient in terms of
the number of required experiments for a given network. How-
ever, this does not necessarily imply computational efficiency.
Indeed, it is inefficient to search through all possible solutions
for large values of kmax and N because such a scheme requires
O(Nkmax�1) computations in the initialization step. To relieve this
computational inefficiency, our selection algorithm can be
readily combined with other computational methods to search
for possible solutions. Because we use small changes in gene
expression as an initial selection criteria (Step 2 of our algo-
rithm), we can perform several initial perturbation experiments
without inspecting all consistent possible solutions, thereby
reducing NCPS in the initialization step. Many methods, such as
singular value decomposition (26) and dynamic programming
techniques (27), can then be used to construct an initial set of
possible solutions from such a data set (Step 3.1 of our algo-
rithm). The number of remaining solutions can be further
reduced by using carefully selected perturbations (Step 4 of our
algorithm). We can therefore flexibly adjust the computational
efficiency, depending on the complexity of the network and the
experimental resources available.

The utility of our reverse engineering algorithm depends on
how well controlled gene expression technologies can be applied
and the quality of gene expression measurements. The magni-
tude of the perturbation is bounded by two constraints. On the
one hand, if the perturbation is too large, the gene network will
be pushed outside of its linear response regime and this will
weaken the algorithm’s assumption of linearity. As a result, the

Fig. 6. Recovered wiring diagram of the Drosophila segmentation cell
model. Connections that are statistically significant are shown as solid lines;
suggested connections that are not statistically significant are indicated with
dashed lines. Stars indicate that our algorithm gives the same sign of the
connection as when the Jacobian is numerically computed from the segmen-
tation cell model equations at the corresponding fixed point. Arrows and
filled circles denote activation and repression, respectively.

5948 � www.pnas.org�cgi�doi�10.1073�pnas.0933416100 Tegnér et al.

error in the predicted network will increase. On the other hand,
if the perturbation is too small, the response of the gene network
will be masked by instrument and biological noise. The exact size
of the acceptable perturbation must be determined experimen-
tally. Although it does not matter whether the expression of the
perturbed gene is increased or decreased as a result of the
perturbation, regulated overexpression technologies are prefer-
able because of their simpler implementation and more reliable
performance. In addition to the genetic toggle switch, there are
multiple prokaryotic and eukaryotic expression systems avail-
able that provide the negligible baseline and controllable ex-
pression required, including the Pbad system (28, 29), the
ARGENT system (30, 31), and the Pip system (32). Quantitative,
real-time PCR provides the precision required for reliable
measurement of fine changes in gene expression resulting from
small perturbations. Real-time PCR also provides sufficient

throughput to efficiently measure the response of 100 or more
genes.

With maps of gene regulatory networks in our hands, we can
ask new questions about diseases in terms of genetic circuits and
attempt to manipulate the functional outputs of gene networks.
Moreover, we can efficiently identify and validate specific drug
targets and deconvolve the effects of chemical compounds. This
could lead to the development of novel classes of drugs that are
based on a network approach to cellular dynamics.

We thank Drs. Jens Lagergren and Tim Gardner for valuable input and
discussions. Research was supported by Defense Advanced Research
Planning Agency (Grant F30602-01-2-0579), the National Science Foun-
dation Bio-QuBIC Program (Grant EIA-0130331), and the Fetzer
Institute. J.T. also thanks the Wennergren Foundation, the Swedish
Research Council (VR), and the Royal Academy of Science for support.

1. Davidson, E. (2001) Genomic Regulatory Systems: Development and Evolution
(Academic, San Diego).

2. Jacob, F. & Monod, J. (1961) J. Mol. Biol. 3, 318–356.
3. Dickson, R., Abelson, J., Barnes, W. & Reznikoff, W. S. (1975) Science 187,

27–35.
4. Vogelstein, B., Lane, D. & Levine, A. J. (2000) Nature 408, 307–310.
5. Becskei, A. & Serrano, L. (2000) Nature 405, 590–593.
6. Gardner, T. S., Cantor, C. R. & Collins, J. J. (2000) Nature 403, 339–342.
7. Elowitz, M. B. & Leibler, S. (2000) Nature 403, 335–338.
8. Ljung, L. (1999) System Identification: Theory for the User (Prentice–Hall,

Englewood Cliffs, NJ), 2nd Ed.
9. Arkin, A., Shen, P. & Ross, J. (1997) Science 277, 1275–1279.

10. Wahde, M. & Hertz, J. (2000) Biosystems 55, 129–136.
11. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. & Young, R. A. (2001) Pac.

Symp. Biocomput. 6, 422–433.
12. Akutsu, T., Miyano, S. & Kuhara, S. (2000) Pac. Symp. Biocomput. 5, 290–301.
13. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K.,

Bumgarner, R., Goodlett, D. R., Aebersold, R. & Hood, L. (2001) Science 292,
929–934.

14. Wessels, L., van Someren, E. P. & Reinders, M. J. T. (2001) Pac. Symp.
Biocomput. 6, 508–519.

15. Friedman, N., Linial, M., Nachman, I. & Peér, D. (2000) J. Comput. Biol. 7,
601–620.

16. D’haeseleer, P., Liang, S. & Somogyi, R. (2000) Bioinformatics 16, 707–726.
17. Wagner, A. (2001) Bioinformatics 17, 1183–1197.
18. van Someren, E., Wessels, L. & Reinders, M. (2000) in Proceedings of the Eighth

International Conference on Intelligent Systems for Molecular Biology, eds.
Altman, R. B., Bailey, T., Bourne, P. E., Gribskov, M., Lengauer,T., Shindy-
alov, I., Ten Eyck, L. & Weissig, H. (AAAI Press, Menlo Park, CA), pp.
355–366.

19. Holstege, F. C., Jennings, E. G., Wyrick, J. J., Lee, T. I., Hengartner, C. J.,
Green, M. R., Golub, T. R., Lander, E. S. & Young, R. (1998) Cell 95, 717–728.

20. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. (1999)
Nat. Genet. 22, 281–285.

21. Hasty, J., McMillen, D., Isaacs, F. & Collins, J. J. (2001) Nat. Rev. Genet. 2,
268–279.

22. Jeong, H., Mason, S., Barabási, A. & Oltvai, Z. (2001) Nature 411, 41–42.
23. Jeong, H., Tombor, T., Albert, R., Oltvai, Z. & Barabási, A. (2000) Nature 407,

651–654.
24. von Dassow, G., Eli, M., Munro, E. M. & Odell, G. M. (2000) Nature 406,

188–192.
25. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R.,

Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., et al. (2000) Cell
102, 109–126.

26. Yeung, M. K. S., Tegnér, J. & Collins, J. J. (2002) Proc. Natl. Acad. Sci. USA
99, 6163–6168.

27. Cormen, T. H., Leiserson, C. E. & Rivest, R. L. (2001) Algorithms (MIT Press,
Cambridge, MA), 2nd Ed.

28. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. (1995) J. Bacteriol. 177,
4121–4130.

29. DeVito, J. A., Mills, J. A., Liu, V. G., Agarwal, A., Sizemore, C. F., Yao, Y.,
Stoughton, D. M., Cappiello, M. G., Barbosa, M. D. F. S., Foster, L. A. &
Pompliano, D. L. (2002) Nat. Biotechnol. 20, 478–483.

30. Rivera, V. M., Clackson, T., Natesan, S., Pollock, R., Amara, J. F., Keenan, T.,
Magari, S. R., Phillips, T., Courage, N. L., Cerasoli, F., et al. (1996) Nat. Med.
2, 1028–1032.

31. Natesan, S., Molinari, E., Rivera, V. M., Rickles, R. J. & Gilman, M. (1999)
Proc. Natl. Acad. Sci. USA 96, 13898–13903.

32. Fussenegger, M., Morris, R. P., Fux, C., Rimann, M., Stockar, B., Thompson,
C. J. & Bailey, J. E. (2000) Nat. Biotechnol. 18, 1203–1208.

Tegnér et al. PNAS � May 13, 2003 � vol. 100 � no. 10 � 5949

G
EN

ET
IC

S

�����������
	���������������
������������ ���
�
��� ���!������"�����$#�%��'&��

(� �)�*����*+,�*� ���
����-�.����/0�1�
�2���-��34+,����%5����#6�7�*8�9;:<�=+>	���/?+@�A	�%B9��� � ���

C2DFEHGIDFJ<KLDFMON)PDQJSR T UWVIXZY�[AY�\']^DFG*_`DFNba�DFc`N`MdRSVIC2DQegf�hiEj] k.RSV�h2N`l
COh2mnDQE<C*YIo�pOqrqtsrN`E R

���������	��
������
�����
	������������	 !�#"%$'&)(*�,+�-*�.�0/21!34+�&)"65!7�89":�+�-*��7#&)5*;6<=�	>?�0<)<@5*��+A��":��BDCE;:"F$:���#5*�0(HG2IJ�K 5!"65!<)&)5*�034�,�0/L1!34+�&="65M7	(*�07�>?�#&)GM&)5*;N+�-*�O+�&QP,�O��$:"6<)1*+�&)"65R":8�GS":+�-T !��":+U�0&)5M7WVX&)5>�34 M&=+�3:<9Y�3:5!(�;:�05*�07�Z\[]-*�07U���0/L1!34+�&="65!7]���� !���07U�052+]+�-*��7#&)5*;6<=��>?�0<)<^&Q5_+�-*��5*��+A��":��BP,"'(*�0<2":8M$:"65,`�3:7�7U"F�ba�ced:fhg�V J YiZkjl�m-M30$:�n+�-*������89":���m"6P	&=+U+U�0(,(M&hoS1M7�&=$:�\>?"61! M<)&)5*;+U���#P	7p&)5_+�-*��":�#&);6&)5!3:<SP,"'(*�0<qZ
r_s�trvuxw y�z{	|~} �� �e�.��� RU� �v��� �v��� �X�� �2��� �X� � �2��� �X�L� �v� � �2��� �X�k� �~�n� � �X�� �n� � �X� �A�n� � �9�'� �e�.��� RU� �2�M� �v��� �X�� �v��� �X� � �v��� �X�'� �v� � �2��� �X� � �A�n� � �9��� s0tD�� � J��
r���rvu w y z{ �e�¡ s�t � ��£¢ �¥¤ �

¦S§4¨¦ª©T«¬#®¯'°4±
²³³³³³³³³³³´�µi¶¸·~¹ °¸±6º»»»¼ ¶¸·¾½À¿qÁ ¶4Â'Ã ¶4Â'¹ °4±Ä ¶¸Â*¹ °¸± Ã ¶4Â'¹ °4±iÅ ¶4Â Ã ¶4Â'¹ °¸±2Æ Ã ¶¸·~¹

°¸±Ä ¶F·~¹ °4± Ã ¶¸·A¹ °4±?Å ¶¸·¾½À¿qÁ ¶¸Â'Ã ¶4Â*¹ °4±Ä ¶4Â'¹ °¸± Ã ¶4Â'¹ °4±?Å ¶4Â'Ã ¶4Â'¹ °4± Æ Ã ¶¸·~¹
°¸±2Ç ÈÈÈÉ Å µ?ÊÌËv¹ °¸±¸Í ·¾ÊkË Ã ÊÌËv¹ °4±Ä ÊÌË6¹ °4± Ã ÊÌËv¹ °4±?Å ·¾ÊkË Ã ÊÌËv¹ °¸±vÎ¿ Å µ ¶F·~¹ °4± º»»»¼ ¶¸·¾½À¿qÁ ¶4Â Ã ¶4Â'¹ °4±Ä ¶¸Â*¹ °¸± Ã ¶4Â'¹ °4± Å ¶4Â Ã ¶4Â'¹ °¸± Æ Ã ¶¸·~¹

°¸±Ä ¶¸·A¹ °4± Ã ¶¸·A¹ °4± Å ¶¸·¾½À¿qÁ ¶¸Â'Ã ¶4Â*¹ °4±Ä ¶4Â'¹ °¸± Ã ¶4Â*¹ °4± Å ¶4Â Ã ¶4Â'¹ °4± Æ Ã ¶¸·~¹
°¸± Ç ÈÈÈÉ Å µ ÊÌËv¹ °¸± Í ·¾ÊÌË¸Ã ÊkËv¹ °¸±Ä ÊkËv¹ °4± Ã ÊÌËv¹ °¸± Å ·qÊÌË¸Ã ÊkËv¹ °4±6Î

Ï ÐÐÐÐÐÐÐÐÐÐÑ¸Ò §4¨ ¬�®¯'°4±eÓ ÔXÕ

r�ÖL×ÙØrvu w ySz{	Ú ���Ù =ÛpÜ � Ö'×bØÝ¢ � Þ �
rßMuªàr6u w y�z{�áDâDã �� ã Ú � RU� �v��� �2��� ä ©æå� �2��� ä ©æå � �v��� ä ©æå � �v� � �v��� ä ©çå � � �vèé� ä ©æå� �6èé� ä ©æå � �6èé� ä ©çå � ã Ú � RU� �2� � �2��� ä ©æå� �v��� ä ©æå � �v��� ä ©æå � �v��� �2��� ä ©æå � � �6èé� ä ©æå � ßMuéà��� �¥ê �
r�ë y�ìr6u w y z{�áDâDã ßMuéà0í4î � ë y�ì ¢ �¥î �

r�à��r6u w y�z{����

�� �E� RU� �L� � �L��� å	�� �L��� å	� � �2��� å
� � �L� � �2��� å
� � ��� � å	�� � � å
� � � � å
� � �E� RU� �2� � �L��� å
�� �2��� å
� � �L��� å	� � �2��� �L��� å
� � � � � å
� � à� �� ��� �
r ì Örvu w ySz{�ã Ú V à� � ì Ö Y � ySz0ì ã Ú ì Ö áDâDã ��� ¬ �6� �vè� � ¬ �v� �vè � � ¬ �v� �6è � áDâDã � � ¬ �v� �6è ¢ ��� �
r ì �rvu w ySz%ì ã Ú ì Ö áDâDã � � ¬ �6� �vè� � ¬ �v� �vè ��� ¬ �v� �6èF� áDâDã ��� ¬ �v� �6è ¢ �

y�z�ì �{�ã Ú ��� �
r����r6u w y�z{����

�� �e�]� RU� �v��� �v��� ���� �v��� ��� � �2��� ���6� �2�M� �v��� ��� � � �2��� ���� �2��� ��� � �L��� ���4� �e�]� RU� �v� � �v��� ���� �2��� ��� � �2��� ���:� �v��� �2��� ��� � � �L��� ��� � ��� �� � J�K¸�
[]-!�N-M3:<=8��AP�3 �'&)P�3:<�3:>?+�&=$434+�&="65 >?"L�"!�>�&=�052+O&)7�;:"%$:���#5!�0(GLI$#�C�7�34+�1*�i34GM&)<)&=+~I>?"L�"!�>�&=�052+@89":�@�05!-!3:5M>?���&%@C2-!3:<=8'�A<)&=89��VX&)52$:���#7U�]":8^(*��;:�i3:(!34+�&="65	�i34+U�FYiCL3:5!(�(�&Q7k+�-*��Ý&)<)<6>?"L�"!�>�&=�052+�Z*)!":�E8X1*��+�-!����(*��+�3:&)<Q7e>?"65!7�1M<=+^$:"65 `Ý3:7#7U"%� a�c^d:fhg]V J YiZ,+Ì34�#3:P,��+U���i734���-# w K/.)J C�{ w J�K C y�z w J C0(w J1.)J C � ×ÙØ w K/. ê C32 w J VX(M1!P	P�I M34�#3:P	��+U���p89":�]GM3:7�3:<��4�' !���07#7�&="65�YiC!3:5!(5% ã Ú T 687 w % ��� T 687 w K/.)J Z

9;:=<>:=?@:�ACB/:

J Z�$:"65 `�3:7�7�"%��CED Z=CGF\<)&qCIH Z=CEHW1M5*��"*CIFpZJH Z,KML�(!�0<)<qC*D Z,H ZmV ¤ K:K:K YON�d:c
P/QUa
R�S�T C J �U� � J �:¤ Z

