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Abstract

Epidemiological studies employ pairwise measures of association to
quantify dependencies among diseases and exposures. The reliable use
of these measures to draw conclusions about the underlying association
strengths requires that the measures have no undue dependencies that sys-
tematically distort their values. These conditions are particularly relevant
when multiple pairwise associations are compared and ranked in a cohort
study, as in the case of construction of disease networks. Following an
empirical approach and using disease diagnoses data from a large cohort
of 5.5 million patients as a test set, we develop a comprehensive method-
ology to characterize the variability of measures in selection of disease
pairs based on effect-size. Specifically, we define putative bias variables,
and examine the distribution of the measure scores conditioned upon it.
This procedure reveals systematic bias in widely used measures such as
relative risk and correlation coefficient. In addition, we devise a novel
measure family using a stochastic model for differential rate of develop-
ment of diseases. We demonstrate marked reduction in above-mentioned
bias with an appropriate choice from this measure family.

1 Introduction

Population cohort is used in epidemiological and medical research to infer im-
portant relationships between diseases and related factors. These relationships
are deduced based on statistical measures [1, 2] employed to quantify the nature
and degree of association.
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The validity of inferences made using such measures therefore depends on its
consistency and robustness. In qualitative terms, a pairwise association measure
should represent the ‘true interaction’ between a pair of diseases, which, among
other things, must be independent of those quantities that do not involve their
joint co-occurrence in the cohort. For example, the measure should be inde-
pendent of the minimum (or maximum) of the prevalences of the two diseases.
This must not be mistaken to mean that the definition of the measure should
not involve such quantities, which they most often do. The requirement is that,
when applied to large number of disease pairs, there be no systematic depen-
dence of the measure on such quantities. Naturally, this condition is of even
greater significance when comparison and rankings of multiple disease pairs with
dissimilar prevalences are involved as in the case of disease networks [3, 4, 5].

The straightforward approach to investigate this potential problem would be to
simulate several pairs of diseases with a similar ‘interaction’ but differing with
respect to the other quantities (those independent of joint co-occurrence) and
determining if there is a systematic dependence of the measure on these quan-
tities. The difficulty with this approach is that there is no objective definition
of ‘interaction’ of a pair of diseases; indeed, the measure is trying to precisely
capture this, leading to circularity in the problem statement. And yet, this
phenomena does not arise from an artifice in semantics; its origins lie in our
lack of understanding of how a pair of related diseases interact.

For example, in the study of [6], several comorbidity measures are compared
on simulated data, with the strength of association determined by the z−score
of the co-incidence assuming binomial distribution. This of course is a specific
choice for setting association strengths and evaluating the different measures
using that as a benchmark. A priori, there is no justification for assuming
this form for the relationship between strength of association and co-occurrence
numbers.

In observational studies, where statistical associations are only cautiously inter-
preted as potential causal relations [7], this lack of understanding is accepted.
Nonetheless, what is less appreciated is how similar values of association ob-
tained by applying a single measure may reflect different extents of association,
even when other sources of bias such as selection type or confounder effect is
absent.

Although there have been studies describing the differences in measure prop-
erties and suggested procedures for domain-specific selection [8, 9], to the best
of our knowledge, there has been no systematic approach to examine the bias
in association measures in the context of diseases. Therefore, a large cohort
data become useful in investigation of measure bias using the empirical distri-
bution of disease associations. Critically, the difficulty of accurate simulation
of disease associations discussed earlier is directly overcome with an empirical
dataset consisting of prevalence and co-occurrence of a heterogeneous set of dis-
eases. This permits translation of our abstract conception of bias into a more
well-defined form characterized by systematic over- or under- estimation of as-
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sociations depending on underlying putative bias variables. This also provides
an unambiguous method to compare the bias of different measures.

Here, we use the ICD-10 coded diagnoses from in-patient care, disability pension
and causes of death for a cohort of all 5.5 million working-aged people living in
Sweden in December 1994, followed prospectively for 13 years. With this cohort
serving as test data, we develop a systematic methodology to characterize the
biases of standard measures of associations between diseases. With the aim of
understanding the impact of bias on effect-size calculations, we quantify the
bias using three distinct indices. The ensuing analysis provides insight into the
sources of bias which guides our approach to devise new measures. Using a
stochastic model of disease development with differential rate of diagnosis, we
derive a novel measure family. We find that a suitable measure from this family
provides the best performance among all the considered measures in terms of
having the least overall bias.

2 Results

We introduce the framework for characterizing bias by considering two com-
monly used measures for pairwise associations, relative risk (RR) [10, 11] and
φ−correlation [12, 13]. RR and the family of measures similar to it such as odds
ratio [14, 15], hazard ratio, and Yule’s Q [16] are based on relative probabilities
of occurrence of diseases in different conditions. To consider these measures in
more general terms, we define the 2×2 contingency table (Table 1) for a disease
pair A and B, where the top-left entry p represents the number of individuals
having both diseases, q, the number having B but not A and similarly for the
entries on the second row. N = p+ q+ r+ s is the total number of individuals.

The relative risk for disease A, in the presence of B is the ratio of prevalence of
A in the subset diagnosed with B to the prevalence in the subset not diagnosed
with B. :

RRA|B =
p/(p+ q)

r/(r + s)
(1)

and likewise, swapping A and B

RRB|A =
p/(p+ r)

q/(q + s)

It should be noted that the original definition of relative risk considers disease in-
cidence among sets exposed and not exposed to a given condition. This explains
the asymmetry in the above definition, where presence of a disease is considered
as an exposure condition. However, we cannot apply the original interpreta-
tion directly to the cohort when the order of occurrence of the disease pair in
an individual is unknown. Despite that, we can make simplifying assumptions
for large cohort, and this was precisely the definition used in previous studies
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involving disease networks [3, 13]. As the individual disease prevalences in our
cohort is small, we can assume that

p/s, q/s, r/s << 1.

Further if we assume that
p/r, p/q << 1,

which effectively implies that prevalence of one disease within the subset of
patients having another disease to also be very small, it is easy to show that the
reduced expressions for both are identical.

RRA|B ∼
pN

nAnB
(2)

We find that the expression in the last line above is explicitly symmetric in the
two diseases.

A related measure, odds ratio [17] for the same contingency table is given by:

OR =
p/q

r/s
=
ps

qr
(3)

Unlike RR, odds ratio is explicitly symmetric in the two diseases, and further
it is easy to show that, in the limit that we are interested in, where prevalence
rates are assumed to be small, they converge to the same value.

ps

qr
=

pN

nAnB

1

1 + (p+ q + r)/s
(1 + p/r)(1 + p/q) ∼ pN

nAnB

φ correlation:

Another common measure used for contingency table is the φ correlation and
measures that reduce to a similar form include Cohen’s (κ) [18] and Kendall’s
tau-b [19].

The φ correlation is obtained by taking the standard correlation between the
binary vectors corresponding to the two diseases. For a given disease A, the
corresponding vector is of length equal to the number of patients and each
entry is 1(0) depending on the disease being present (absent) in that individual.

φA,B =
p− nAnB√

nAnB(N − nA)(N − nB)
(4)

Equivalently, it can be defined as
√
χ2/N where χ2 is chi-squared statistic

calculated for the contingency table.
Another related measure (based on concordant statistics) is Sommer’s D [6],
and in the limit discussed earlier, reduces to an asymmetric version of the φ
correlation coefficient.

Sommer’s D =
p− qr

N

min{nA, nB}
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2.1 Measure Biases

Let D be a sample of size N drawn from a population where each element is a
vector of binary variables (A1, A2, · · ·AK) such that pairwise associations among
these variables are to be determined and compared. For the cohort disease set,
Ai’s are the indicator variables for the presence or absence of disease i and
every data-point represents an individual. For a given pair of binary variables
(Ai, Aj), let nuv be the number of pairs of the form (u, v), u, v ∈ {0, 1}, and
n1+ be the marginal on Ai and likewise for Aj . For K sufficiently large, we say
that the measure distribution has a dependence on a variable W (W is some
function of n1+, n+1, N only) if the distribution of the measure conditioned on
pairs of variables for which W lies in some finite interval ∆w is different from
that of the independent distribution, i.e., P (µ|W ∈ ∆w) 6= P (µ). When there
is a systematic dependence of the distribution statistic (for example, mean or
median) on W , we say there is a bias with respect to W .

It is important to note that this definition of bias is empirical. The existence
or non-existence of bias in a given measure is dependent on the nature of asso-
ciations found in the population. A measure may show considerable bias when
applied to binary variables representing diseases but may be well-suited (i.e.,
show no bias) when measuring association between developmental indices of
nations. This is qualitatively different from identifying general properties that
a measure is required to satisfy [20, 21] although it is generally accepted that
identifying the property that is most relevant depends on the specific context
[8].

The interval width ∆w is chosen so that there are sufficient number of data-
points falling within that interval to obtain reliable statistics. Larger the value
of K, the smaller ∆w can be chosen.

Define F to be the set of distinct diseases (classified by ICD 10 three-character
precision) in our cohort with K = |F| > 1400 . We investigate measure bias by
considering variables W that are likely to affect the measure characteristics. We
first examine potential bias with respect to the expected co-occurrence obtained
for a given pair of diseases A,B ∈ F under the assumption of independence of

co-occurrence W = n
(0)
AB = nAnB

N . Observe that there is no a priori reason to
expect the distribution of the measure to depend on it.

In line with our formulation, we partition the set of all disease pairs D into
M = 20 mutually exclusive subsets Dj , j = 1, 2, · · ·M .

D = {{A,B}|A,B ∈ F} = ∪Mj=1Dj

where Dj = {{A,B}|vj−1 < n
(0)
AB < vj} The intervals vj are determined by

the requirement that each of these partitions contain the same number of pairs
|D0| = · · · |Dj | = · · · |DM |.
Having partitioned the data set according to the potential bias variable, we
apply the measures within each to identify systematic dependence, if any. We
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begin with RR (Eq. 2) and Fig. 1a shows the box plot of the distribution
of the measure values within each partition. We find unambiguous systematic
bias where low expected co-occurrence leads to higher values of RR. Equally
significant is the variation of size of the box representing the boundaries of the
25th and 75th percentile (interquartile range) for the collection of RR values in
each partition. This increase is even more pronounced than that of the median,
as the expected co-occurrence decreases.

We can explain the large spread by noting that, for lower expected co-occurrences,
small fluctuations in co-occurrence numbers leads to wide variations in RR. Un-
der the assumption of the independence of a disease pair, we can show that the
distribution of co-occurrences (for a given disease pair) is Poisson with mean
being the expected co-occurrence. As the variance of a Poisson distribution is

equal to the mean, the coefficient of variation is given by

√
n

(0)
AB/n

(0)
AB = 1√

n
(0)
AB

,

representing an inverse relation with expected co-occurrence .

The same analysis is repeated for the φ correlation and Fig. 1b shows the box
plot for this case. A systematic bias is once again immediate from inspecting
the figure, except that the bias points in the opposite direction: φ correlation
tends to inflate the associations for higher expected co-occurrences.

We thus find that both RR and φ correlation have significant bias with re-
spect to the expected co-occurrence, except that the bias works in opposite
directions. Where RR tends to assign higher associations to disease pairs with
lower expected co-occurrence, the exact opposite it true for the φ correlation.
Conversely, higher expected co-occurrences lead to lower RR and higher φ cor-
relation. Note that lower (higher) expected co-occurrences arise when one or
both diseases have low (high) prevalence.

3 Characterizing Bias

Since both RR and φ correlation show bias, we want to compare their magnitude
of bias. This requires a scheme to correctly identify and quantify the bias for
any given measure.
It has long been recognized in clinical and observational studies and in epidemi-
ology that null hypothesis tests for associations are of only limited use [22, 23].
Specifically, the rejection of the null-hypothesis and the significance level at
which it is rejected does not signify the degree of association. Hence effect-sizes
are necessary where the strength of association is important [24] as is likely true
in most realistic cases.

Selection based on minimum effect-size is equivalent to setting a threshold (as-
suming everything else to be fixed) for the measure. We want to characterize
bias in terms of its impact on selection. For definiteness, assume that we are
interested in the subset of pairs comprising the top f fraction of D (as deter-
mined by a given measure). We can equivalently express this in terms of a
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threshold (θ(f)) where all pairs with measure values greater than the threshold
are selected. If the same threshold is then independently applied to the pairs in
every partition for the bias variable, a fraction fj of pairs within each subset is
selected. If there is no bias, then these fractions would be identical; conversely
the extent of variation of the fractions across the partitions will be treated as a
proxy for the bias.

Fig. 2a shows the selected fractions for RR and φ correlation measures when the
overall fraction f sought is 0.05 (i.e, we set a threshold such that only 5% of all
pairs are greater than that threshold) with expected co-occurrences as the bias
variable. As expected the stringency of the selection depends on the partition,
with larger fractions being chosen for lower expected co-occurrences in the case
of RR (and the opposite for φ correlation).

This approach of using fractions to understand bias has a distinct advantage of
treating all measures on an equal footing. The fractions represent the effect of
the measure on the result of querying the data-set. To capture the extent of
variation of fractions across the different partitions, with emphasis on its impact,
we define appropriate indices to characterize them. The naive approach of
using standard deviation is unsatisfactory because the fractions are not normally
distributed. We propose three different indices that helps us better understand
the bias.

1) Interquartile range (IQR): IQR makes no assumption about how the data
is distributed. This describes the range within which the half of the data around
the median is located. This also has the advantage that the metric scales very
smoothly and dependably with the bias variation in fractions.

2)MinMax : A metric that helps us characterize the extremes is maxf
minf . While

this measure may be seen as something very narrow in scope, it captures the
worst-case scenario of the bias: comparing two pairs that come from two ex-
tremes.
3)Mean Absolute Deviation (MAD). This weights all deviations from the
median equally. Again, this would be preferred over the mean squared deviation
because the underlying distribution need not be normal.
The result of applying the three indices to the fractions shown in Fig. 2a is
shown in Fig. 2b. We find that the MinMax score has a largest gap for the two
measures (note that MinMax has been reduced by a factor of 100 in all figures),
and RR’s bias is indeed very high (note the y-axis is logarithmic), suggesting
that the effect of the bias on RR is more severe compared to φ correlation, when
comparing two disease pairs whose expected co-occurrences differ widely. There
is not much separating the two measures in terms of IQR or MAD.

3.1 Prevalence Ratio Bias

The ratio of the prevalences of the two diseases as a possible bias for mea-
sures has been considered before [25, 20]. We follow a similar approach as with

7



expected-co-occurrence and partition all pairs based on W = n<

n>
, where n<(n>)

represents the prevalence of the less (more) prevalent disease in the pair. We use
the same threshold on RR and φ such that 5% of all pairs are selected overall.
The variation of the fractions is shown in Fig. 3a and we find that φ correlation
shows larger differences in fractions, with distinctly suppressed numbers for low
prevalence ratios. RR is relatively more balanced and this fact is also reflected
in the three indices shown in Fig. 3b.

3.2 Overcoming Bias

The bias of φ correlation with respect to the prevalence ratio can be explained
by noting that φ has an upper bound that depends on the ratio of prevalences.
Assuming disease pairs with prevalence nA < nB

φ(1, 2) =
nAB/N − (nA/N)(nB/N)√

(nA/N)(nB/N)(1− nA/N)(1− nB/N)

<=
min{nA, nB}/N − (nA/N)(nB/N)√

(nA/N)(nB/N)(1− nA/N)(1− nB/N)

=
(nA/N)(1− nB/N)√

(nA/N)(nB/N)(1− nA/N)(1− nB/N)

=

√
nA
nB

1− nB/N
1− nA/N

<

√
nA
nB

Thus the maximum possible association between two diseases is not a constant
but depends on their prevalence ratio [20]. This suggests that disease pairs
with a high disparity in prevalences would systematically have lower values of
φ correlation and indeed this is what we observed in Fig. 3a.

A quick workaround of this problem is defining a modified φM = nAB/N−(nA/N)(nB/N)
min{nA/N,nB/N} ,

which has a uniform upper bound of unity, attained when co-occurrence nAB =
min{nA, nB}. Fig. 4a compares the original correlation and the new modified
version. We immediately observe the correction offered by φM to the original
correlation goes past the required bias removal: the measure shows a bias in the
opposite direction, tending to select greater fraction for more dissimilar preva-
lence ratios [26]. The three indices in Fig. 4b shows that φM in fact has higher
bias than φ.

4 New Measure

We propose a conceptual and systematic approach to define a new measure of
association and this leads us to a family of measures parametrized by a constant
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γ

φγ =
(n1n2

N

) n12

N −
n1n2

N2(
n1+n2

N

)2 − (n1−n2

N

)2
γ
. (5)

The full derivation of this measure (Eq. 19) is given in the Methods section but
the approach and motivation is as follows. We formulate the association between
a pair of diseases in terms of the differential rate of development of one disease in
the presence or absence of the other. We then use stochastic differential equation
to evolve the disease probabilities in time and use the contingency table entries
as constrains to estimate these rates. Since these rates are a priori unknown, and
there are more variables than equations, we further use an additional constraint
to choose a unique solution (the parameter γ originates from the constraint
equation).

We define our new measure as a member of this family, with γ = 0.994.

φM2 = φγ=0.994 =

(
n1 + n2

Nβ

) n12

N −
n1n2

N2

0.006 ∗ ((n1/N)2 + (n2/N)2) + 3.988 ∗ n1n2

N2

(6)
The choice of γ is not entirely arbitrary - the justification for its selection is
given in the Appendix, along with a discussion of the relationship between the
measure properties and γ. The fractions obtained when pairs are partitioned by
prevalence ratio for φ, φM and φM2 are compared in Fig. 5a. Visual inspection
suggests that φM2 is the most balanced among them (it increases with decrease
in prevalence ratio but unlike φM , φM2 attains a maximum and turns around).
The corresponding indices in Fig. 5b confirm our observations that φM2 has
the least bias for all three indices, and while standard correlation performs
comparably well with IQR and MAD, φM2 is considerably better with MinMax.

4.1 Comparison across threshold fractions

We have thus far demonstrated that the new measure has the least bias with
respect to prevalence ratio compared to other correlation measures. However,
this was done for a specific setting of threshold, such that an overall fraction of
5% of pairs are selected. The next logical step is to find out if that reduction
in bias is valid for a wider range of fractions. Indeed, the threshold setting for
determining significant pairs would depend on the context of the inquiry.

A comprehensive comparison of the four measures (RR, φ, φM and φM2) is
done across five different thresholds (corresponding to overall fraction of selected
pairs, 0.1,0.05,0.01,0.005 and 0.001). The basis of comparison is the three indices
(IQR, MAD, MinMax), taken one at a time.

Fig. 6a,b and c shows the relative performance of all measures according to IQR,
MAD and MinMax respectively when potential bias variable is the prevalence
ratio. We find, for example, from the first two sublots for IQR and MAD, that
φM2 has the least bias for threshold fractions less than or equal to 0.01 but has
significantly more bias than RR for higher fraction of selections. For MinMax,
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φM2 has the least bias for overall fractions less than 0.05 and is only marginally
worse than RR when the overall fraction is 0.1. At the other end, either φ or
φM have the highest bias for any given overall fraction and any given index.

It is clear that, although the new measure φM2 is consistently better than the
two correlation measures, RR has lower bias when the selected fractions are
higher. There is nothing unexpected about this because the new measure was
devised to eliminate the bias in φ and φM only. While it may be tempting to go
with RR for higher threshold fractions, we cannot prematurely conclude that
until we consider the bias due to the expected co-occurrence as well.

Figures 7a,b and c explore the biases with respect to the expected co-occurrence
using IQR, MAD and MinMax indices respectively. We find that, although we
had observed in Fig. 6 that RR performed well for overall fractions greater than
or equal to 0.05, this is not the case when we examine the bias due to expected
co-occurrence. Both MAD and MinMax indices show RR having the highest
bias for these thresholds. In addition, the (absolute) magnitude of the bias of
RR in Fig 7 is greater than the magnitude of bias of φM2 in Fig. 6 for all three
indices . Taking together, φM2 still comes out as a better choice.

Interestingly, Fig. 7 shows φM having the least bias for all fractions selected
based on MAD and MinMax. Nonetheless, we note that φM2 is not far behind
in comparison. It is also evident from examining Figs. 7 and 6 that whatever
meagre gains can be made with φM in the case of bias with respect to expected
co-occurrence, the cost of greater bias with respect to prevalence ratio is too
high a price for the trade-off. Thus, when we consider the bis variables, the
thresholds and the indices in totality, it is clear that φM2 would be the most
preferable measure.

5 Methods

Our approach to the new measure starts with consideration of the relative proba-
bilities to develop one disease following another. In the most general case, these
probabilities are independent of each other. Let η1(t) and η2(t)) be boolean
random variables corresponding to the two diseases (note the slight change in
notation from earlier) which take values 1(0) when the disease is present (ab-
sent) at time t. We want to obtain a set of relations between the probabilities
of occurrence and co-occurrence of the two diseases in the population at the
end of time τ assuming that neither disease was present at start. To that end,
we assume that the probability to be diagnosed with the disease is given by a
Poisson process. However, we assign different, a priori unknown, rates to the
Poisson process of a given disease depending on whether or not the other dis-
ease has already been diagnosed. For example, a given realization would be the
following: starting from being disease free, disease 1 is contracted at time ta
following which the Poisson rate for contracting disease 2 is different.
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More specifically, if tE1(tE2) represent the time point when disease 1(2) was
diagnosed,

P (t < tE1 < t+ δt|η2(t) = 0) = λ1P δt (7)

P (t < tE1 < t+ δt|η2(t) = 1) = λ1Sδt (8)

In the first case, the primary rate λ1P determines development of disease 1 in
the absence of disease 2, but if disease 2 has been contracted before, then there
is the secondary rate λ1S . Likewise, the rate determining development of disease
2 before (after) diagnosis of disease 1 is given by λ2P (λ1S).

The conditional probabilities at finite time t:

P (η1(t) = 1|η2(t) = 0) =
P (η1(t) = 1, η2(t) = 0)

P (η2(t) = 0)

=

∫ t
0
P (η1(t′) = 0, η2(t′) = 0)P (t′ < tE1 < t′ + δt′)P (η2(t′′) = 0|t′ < t′′ < t)dt′

P (η2(t) = 0)

=

∫ t
0
e−λ1P t

′
e−λ2P t

′
λ1P δt

′e−λ2S(t−t′)

P (η2(t) = 0)

=
e−λ2St − e−(λ1P +λ2P )t

P (η2(t) = 0)(λ1P + λ2P − λ2S)

At the end time point τ :

P (η1(τ) = 1) = P (η1(τ) = 1|η2(τ) = 0)P (η2(τ) = 0) + P (η1(τ) = 1, η2(τ) = 1)

=
e−λ2St − e−(λ1P +λ2P )t

(λ1P + λ2P − λ2S)
+ n12/N

= n1/N (9)

where we identify the conditional probabilities at the end point with empirical
values from the data : P (η1(τ) = 1, η2(τ) = 1) = n12/N and P (η1(τ) = 1) =
n1/N
Likewise, for disease 2:

P (η2(τ) = 1) = P (η2(τ) = 1|η1(τ) = 0)P (η1(τ) = 0) + P (η2(τ) = 1, η1(τ) = 1)

=
e−λ1St − e−(λ1P +λ2P )t

(λ1P + λ2P − λ1S)
+ n12/N

= n2/N (10)

We can write the probability of co-occurrence P (η1(τ) = 1, η2(τ) = 1) as a sum
of two probabilities for two mutually exclusive sets of events, one where disease
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1 precedes disease 2, and second where this order is reversed.

P (η1(τ) = 1, η2(τ) = 1) =

∫ τ

0

P (η1(τ) = 1|η1(tE2) = 0)P (η1(tE2) = 0, t(E2) = tE2)dtE2

+

∫ τ

0

P (η2(τ) = 1|t(E1) = tE1, η2(tE1) = 0)P (η2(tE1) = 0, t(E1) = tE1)dtE1

(11)

where the first(second) factors accounts for cases where diagnosis of disease 1
was made after (before) disease 2. The factors in the integrand above are :

P (η1(τ) = 1|t(E2) = tE2
, η1(tE2

) = 0) = 1− e−λ1S(τ−tE2
)

P (η2(τ) = 1|t(E1) = tE1
, η1(tE1

) = 0) = 1− e−λ2S(τ−tE1
)

and similarly:

P (η1(tE2) = 0, t(E2) = tE2)dtE2 = e−λ1P tE2 e−λ2P tE2λ2P dtE2

P (η1(tE1) = 0, t(E1) = tE1)dtE1 = e−λ2P tE1 e−λ1P tE1λ1P dtE1

Plugging this in Eq. (11), the first integral becomes:∫ τ

0

P (η1(τ) = 1|t(E2) = tE2
, η1(tE2

) = 0)P (η1(tE2
) = 0, t(E2) = tE2

)dtE2

=

∫ τ

0

(1− e−λ1S(τ−tE2
))e−λ1P tE2 e−λ2P tE2λ2P dtE2

=
λ2P

λ1P + λ2P
(1− e−(λ1P +λ2P )τ )− e−λ2Sτ

λ2P

λ2P + λ1P − λ1S
(1− e−(λ1P +λ2P−λ2S)τ )

If we make the approximation λiατ << 1 (W1) for i = 1, 2 and α = P, S,
then the above reduces to λ1Sλ2P τ

2/2. Correspondingly we for the the second
integral in Eq. (11) the approximation λ1Pλ2Sτ

2/2. leading to:

n12

N
=

(λ1Pλ2S + λ1Sλ2P )τ2

2
(12)

Under the same assumption W1, we have:

e−λ2Sτ − e−(λ1P +λ2P )τ

(λ1P + λ2P − λ2S)
∼ τ − (λ1P + λ2P − λ2S)τ2

e−λ1Sτ − e−(λ1P +λ2P )τ

(λ1P + λ2P − λ1S)
∼ τ − (λ1P + λ2P − λ1S)τ2

Plugging the above in Eq. (9,10), we obtain :

n1/N = (λ1P τ)− λ1P
λ1P + λ2P

2
τ2 − λ2Pλ1Sτ

2 (13a)

n2/N = (λ2P τ)− λ2P
λ1P + λ2P

2
τ2 − λ1Pλ2Sτ

2 (13b)
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Eqs. (12, 13) are a set of three equations but with four unknowns λiα, i =
1, 2 α = P, S, which we cannot solve without an additional simplifying as-
sumption. This is of course what we would expect, because that extra degree of
freedom corresponds to our ignorance of the underlying causal relations between
the two diseases.

For example if we use the following ansatz :

λiS = λiP q, i = 1, 2

we can solve the equations and q = n12/N
(n1−n12/2)/N(n2−n12/2)/N , which would ap-

proximate to the standard definition of relative risk ( n12/minn1, n2 << 1).

Substituting λiS = λiP + qi, i = 1, 2, we can rewrite the above relations
in terms of qi which represents the deviation from the situation where the two
diseases are unrelated, i.e, qi = 0.

n1

N
= λ1P τ −

(λ1P τ)2

2
+
λ2P q1τ

2

2
n2

N
= λ2P τ −

(λ2P τ)2

2
+
λ1P q2τ

2

2
n12

N
= λ1Pλ2P τ

2 +
λ1P q2 + λ2P q1

2
τ2 (14)

Further simplifying using A1 we have :

λ1P τ =
n1

N
− q1τ

λ2P τ

2
(15a)

λ2P τ =
n2

N
− q2τ

λ1P τ

2
(15b)

and plugging into Eq. (14)

n12/N = (n1/N −
q1τn2

N
)(n2/N −

q2τn1

2
) +

(n1/N − q1n2τ/N)q2τ

2
+

(n2/N − q2n1τ/N)q1τ

2
)

=
n1n2

N2
(1 + q1q2τ

2) +
n1q2τ

2N
(1− n1/N)− n2q1τ

2N
(1− n2

N
)− q1q2τ

2n1 + n2

N
(16)

∼ n1n2

N2
+
n1q2τ

2N
+
n2q1τ

2N

where we have arrived at the third expression by dropping terms of order
n1n2

N2 qiτ , ni

N q1q2τ
2 and higher. Rewriting the last step,

n1q2τ + n2q1τ

N
= 2(

n12

N
− n1n2

N2
) (17)

Eq. (17) relates the two unknowns q1 and q2. As we have no other constraint
apriori, there is a family of solution to this equation. We have already examined
one example above.
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Thus, we need another constraint in order to determine qi’s. We posit two
hueristic factors in this regard: one, apriori we would expect qi’s to be close to
one another, and the second, maximization of their sum. If we only had the
second criterion, then the q corresponding to be the disease with lower preva-
lence would be 0, and that of the higher prevalent disease very high. Imposing
the first criterion alone assumes a symmetry between the diseases, and while
that may be reasonable in the absence of any other information, we instead con-
sider a trade-off between them. We propose the minimization of the ”energy”
function:

E = α(q′1 − q′2)2 − β(q′1 + q′2)2 (18)

where q′i = qiτ , α, β > 0; the first term favors the q′i’s being close together and
the second maximizing the sum.

We look for solutions of Eqs. (17) that maximizes Eq. (18). This is done
by using the Lagrange multiplier technique for finding the extrema given a
constraint. L(q′1, q

′
2) = E + ρ(q′1n2/N + q′2n1/N − (n12/N − n1n2/N

2))

∂L

∂q′1
= 2α(q′1 − q′2)− 2β(q′1 + q′2) + ρn2/N

∂L

∂q′2
= 2α(q′2 − q′1)− 2β(q′1 + q′2) + ρn1/N

We can now solve the above constraint equations together with Eq. 17 simul-
taneously for the three unknows q′1, q

′
2 and ρ. We give the final expressions for

q′i,i=1,2:

q′1 = 4

(
n1 + n2

Nβ
+
n1 − n2

Nα

) n12

N −
n1n2

N2(
n1+n2

N

)2 1
β −

(
n1−n2

N

)2 1
α

q′2 = 4

(
n1 + n2

Nβ
− n1 − n2

Nα

) n12

N −
n1n2

N2(
n1+n2

N

)2 1
β −

(
n1−n2

N

)2 1
α

And the sum gives us the desired measure in terms of prevalence and co-
occurrence

q′tot = q′1 + q′2 = 8

(
n1 + n2

Nβ

) n12

N −
n1n2

N2(
n1+n2

N

)2 1
β −

(
n1−n2

N

)2 1
α

.

This represents a family of measures parametrized by α, β > 0. Defining γ =
β/α and skipping the constant multiplicative factor of 8:

φγ =

(
n1 + n2

N

) n12

N −
n1n2

N2(
n1+n2

N

)2 − (n1−n2

N

)2
γ
. (19)

For the symmetric case n1 = n2 = n, we have:

q′tot = 0.5
n12

N −
n2

N2

n
N

14



which, except for the factor of 0.5, is very close to what we would get with
the original φ and modified φM correlation, Eq. (4), and exact in the limit
of vanishing n/N . Although this result is independent of constants α, β, to
get reasonable answers for arbitrary ratios n2/n1, we require α/β ∼ 1 (see
Appendix).

6 Discussion

Our proposed framework to characterize the measure properties across potential
bias variables has three key features :(a) bias is characterized in terms of its
impact on selection based on effect-size (b) procedure for determining bias is
independent of the specific measure and hence comparison between measures
is carried out on a neutral platform (c) three indices are devised to capture
different aspects of the bias. Although this framework rests on a specific disease
cohort data-set, any similarly large cohort would be equally suitable for this
task.

The importance of understanding the properties of measures cannot be over-
stated. Even for randomized controlled trials, conclusions depend on the mea-
sure used to characterize the effect of interventions [27]. Although not widely
recognized, it is known that most standard measures of association have sig-
nificant limitations and can give rise to misleading results unless they are in-
terpreted carefully [28]. Despite use of similar measures, the results obtained
from studies using different design of experiments cannot be directly compared
or combined [29]. While all these issues are certainly very relevant, we should
clarify that the measure bias that is highlighted in our work here has different
origins, and to the best of our knowledge, there has been no earlier studies that
have addressed them.

The requirement that the measure distribution be independent of prevalence
ratio could be questioned in certain limits. In the extreme case, one can argue
that, for a pair of diseases with very different prevalence nA >> nB , an unbiased
measure should never assign maximal association even when the co-occurrence
is the highest possible, nAB = nB . The basis for this is the observation that
perfect association implies the pair co-occur in every case (aside from errors
from misclassification or finiteness of study time scale), and hence divergent
prevalence would not arise in the first place. A reasonable counter-argument
would point to the potential scenario of B being an invariable cause of A. What-
ever the consensus may be on this issue, most realistic situations contain very
few or no such cases, and in large cohorts the relations in the generic pair fol-
low nAB << min{nA, nB} where one would expect measure distribution to be
independent of prevalence ratio.

The results reported here on the nature of bias of standard measures and the
performance of the new measure (together with the selection of γ) are valid for
quantifying associations between diseases in a cohort. In a different context,
the choice of variables used to test potential bias itself may not be appropriate.
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For example, if we consider a sample where each data points is binary vector of
different aircraft operating (or not) at a particular airport, then it should not be
surprising that aircraft operating from only a few airports (i.e.,low prevalence)
are strongly correlated (because they are likely to be of larger capacity and
connect major destinations only) while those with higher prevalence are not.
Hence, the choice of partitioning the pairs in the sample should be informed by
what we desire the distribution of associations to be independent of.

A Ā
B p q nB = p+ q
B̄ r s nB̄ = r + s

nA = p+ r nĀ = q + s N = p+ q + r + s

Table 1: Contingency table for a pair of diseases in a cohort
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Figure 1: (a)Variation of RR as function of the expected co-occurrence shown
as a box plot for all the pairs that fill within the particular window of expected
co-occurrence. (b) The same analysis repeated for φ correlation.
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Figure 2: (a) Fraction of pairs above a certain fixed threshold (corresponding to
5% selection among all pairs) within each partition of the bias variable (expected
co-occurrences) for RR and φ correlation measures. (b) Characterizing the
variation of fractions across the different partitions using three indices. Here
and in the following figures, MinMax has been diminished by a factor of 100.
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Figure 3: Fraction of pairs above a certain fixed threshold (corresponding to 5%
selection among all pairs) within each partition of the bias variable (prevalence
ratio, n<

n>
, where n<(n>) is the prevalence of the less (more) frequent disease)

for RR and φ correlation measures. (b) Characterizing the variation of fractions
across the different partitions using three indices. MinMax has been diminished
by a factor of 100.
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Figure 4: (a) Variation of fractions with prevalence ratios for the original corre-
lation φ and its modification φM . We find that the φM has its own bias inflating
the significant fractions for smaller prevalence ratios, which is the opposite of
the original measure. (b) The variation of fractions characterized by the three
indices. MinMax has been diminished by a factor of 100.
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Figure 5: (a)Variation of fractions with prevalence ratios across φ, φM and
φM2. (b) The same is characterized by the three indices. MinMax has been
diminished by a factor of 100.
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Figure 6: The three indices (a) Interquartile Range (b) Mean Absolute Devia-
tion and (c)MinMax of the fractions obtained for the bias with respect to the
prevalence ratio, for different overall (full data) fractions (x-axis) and for all the
measures. MinMax has been diminished by a factor of 100.
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Figure 7: The three indices (a) Interquartile Range (b) Mean Absolute Devia-
tion and (c)MinMax of the fractions obtained for the bias with respect to the
expected co-occurrences, for different overall (full data) fractions (x-axis) and
for all the measures. MinMax has been diminished by a factor of 100.
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Appendices

A Effect of parameter γ on measure bias

We consider how the measure properties change as we modify the value of γ =
β/α in Eq. 5.19 (in main text). As our primary focus is the bias of the measure
with respect to the prevalence ratio, we consider how the the measure changes
with γ for a given prevalence ratio. First, observe that when the prevalence
of the two diseases are equal, the γ factor in the measure expression vanishes.
Following the discussion in the last paragraph of the Methods section, in this
limit of equal prevalence the new measure is equal the original φ and the modified
φM upto a factor of n/N , which is assumed to negligible as in the rest of the
analysis.

In the limit γ = 1, we have an intermediate measure,

φI = φγ=1 =

(
n1 + n2

4n1n2/N

)(n12

N
− n1n2

N2

)
and Fig. 8a shows how the fractions selected by this measure vary when par-
titioning the bias variable (prevalence ratio). Similar to φM , the fractions ob-
tained with φI increases with decrease in prevalence ratio, although it is rela-
tively more balanced and this fact is confirmed by the three indices in Fig. 8b.

The bias pattern suggests that we should examine the relative variation across
the partitions of two measures from the new family corresponding to γ and
γ′. To make this more precise, consider a hypothetical set of disease pairs
Lc = {(n12 = c(k), n1, n2 = n1k,N)|0 ≤ k ≤ 1} where n1 < N is a constant
and each element lk of the set is identified by the prevalence ratio n2/n1 = k.
The set is parametrized by a continuous function c : [0, 1] −→ N such that
c(k) < n1/k.

For a given c and k, the following quantity

φγ(lk)/φγ(l1)

φγ′(lk)/φγ′(l1)
=

1− γ′
(

1−k
1+k

)2

1− γ
(

1−k
1+k

)2 (20)

reflects how the ratio of the measure at prevalence ratio k and unity, depends
on γ. The monotonic decrease of the ratio with γ together with the observation
that φI = φγ=1 systematically increases with decrease in k implies that we
should choose γ < 1 in order to stabilize the measure.

To probe the dependence of the bias on γ, it is important to determine how the
ratio decreases with γ. For a given k, what should γ be for the ratio in Eq. (20)
to decrease by a factor m compared to its value for γ = 1.
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Figure 8: Fraction of pairs above a certain fixed threshold (corresponding to 5%
selection among all pairs) within each partition of the bias variable (expected
co-occurrences) for φ, φM and φI correlation measures. (b) Characterizing the
variation of fractions across the different partitions using three indices. MinMax
has been diminished by a factor of 100.
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1−
(

1−k
1+k

)2

1− γ
(

1−k
1+k

)2 = 1/m (21)

=⇒

1−m
(

1−
(

1−k
1+k

)2
)

(
1−k
1+k

)2 = γ (22)

The plot of the dependence of γ on m and k is shown in Fig. 9. We find, as
expected that, to attain the same reduction m, γ increases as we decrease the
ratio 1/k. This is because, for a fixed value of γ, m increases as we increase
1/k.

More important, observe that to attain ratios of about m = 2, at 1/k = 300,
we need γ to deviate from unity only by a very small amount (0.015). The
appropriate choice of γ is guided by the desired suppression of selected fractions
at large 1/k.

References

[1] N E Breslow and N E Day. Statistical methods in cancer research. Volume
I - The analysis of case-control studies. IARC Sci. Publ., (32):5–338, jan
1980.

[2] S Greenland and J M Robins. Conceptual problems in the definition and
interpretation of attributable fractions. Am. J. Epidemiol., 128(6):1185–97,
dec 1988.

[3] César A Hidalgo, Nicholas Blumm, Albert-László Barabási, and Nicholas A
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